

Bachelor of Computer Application

(B.C.A.)

Introduction to Operating System

Semester-III

Author- Harshita V. Vachhani

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education

Mahal, Jagatpura, Jaipur-302025

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU

Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

EDITORIAL BOARD (CDOE, SGVU)

Syllabus

Introduction to Operating System

Learning Objective

- To explain main components of OS and their working

- To familiarize the operations performed by OS as a resource Manager

- To impart various scheduling policies of OS To teach the different memory management

techniques.

UNIT I

OPERATING SYSTEMS OVERVIEW: Introduction, operating system operations, process

management, memory management, storage management, protection and security, distributed

systems. OPERATING SYSTEMS STRUCTURES: Operating system services and systems calls,

system programs, operating system structure, operating systems generations.

UNIT II

PROCESS MANAGEMENT: Process concepts, process state, process control block, scheduling

queues, process scheduling, multithreaded programming, threads in UNIX, comparison of UNIX

and windows. CONCURRENCY AND SYNCHRONIZATION: Process synchronization, critical

section problem, Peterson’s solution, synchronization hardware, semaphores, classic problems of

synchronization, readers and writers problem, dining philosophers problem, monitors,

synchronization examples (Solaris), atomic transactions. Comparison of UNIX and windows.

UNIT - III

DEADLOCKS: System model, deadlock characterization, deadlock prevention, detection and

avoidance, recovery from deadlock banker’s algorithm. MEMORY MANAGEMENT: Swapping,

contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory,

demand paging, page-replacement algorithms, allocation of frames, thrashing, case study - UNIX.

UNIT IV

FILE SYSTEM: Concept of a file, access methods, directory structure, file system mounting, file

sharing, protection. File system implementation: file system structure, file system implementation,

directory implementation, allocation methods, free-space management, efficiency and

performance, comparison of UNIX and windows.

UNIT - V

I/O SYSTEM: Mass storage structure - overview of mass storage structure, disk structure, disk

attachment, disk scheduling algorithms, swap space management, stable storage implementation,

tertiary storage structure. I/O: Hardware, application I/O interface, kernel I/O subsystem,

transforming I/O requests to hardware operations, streams, performance.

References

- Abraham Silberschatz, Peter Baer Galvin, Greg Gagne (2006), Operating System

Principles, 7th edition, Wiley India Private Limited, New Delhi.

- Stallings (2006), Operating Systems, Internals and Design Principles, 5th edition, Pearson

Education, India.

- Andrew S. Tanenbaum (2007), Modern Operating Systems, 2nd edition, Prentice Hall of

India, India.

- Deitel & Deitel (2008), Operating systems, 3rd edition, Pearson Education, India.

Introductlon to Operating System 10

2.
3. Types of Operating System 1-b

3.1 Simple Batch Operating System (Long Term Scheduler) 1-5
3.2 Multiprogram Batch System 1-o
3.3 nme Shanng Syslem (Middle Term Scheduler) 1-7
3.4 Real Ilme Sysfems 1-8
3.5 Clustered System 1-a
3.6 Distibuted Openting Systems 1-g

System Structure 141. User Operating System Interface.........2-j

3. Architecture of Computer System.............2-s
3.1 Operating System 2-8

4. Operating System

Process Management g

5. Operatibns
5.t P/ocess Creation 3-5 5.2 Process Termination 3-6

GPU Schedullng 26

4.1 Simple Structurc 2-9
4.3 Microkemel Structuie 2-11

2.1 CPU Scheduler(ShortTerm Scheduler) 4-3
2.3 Prcemptive and Non-preemptive Scheduling *4

4.1 First Come First Serue Scheduling (FCFS) 4-7
4.3 Priority Scheduling Algorithm 4-13
4.5 Multilevel Queues +17

4.1 Usage 5-5
4.3 Ddddlock and Stdvdtion 5-7

4.2 Layered Structure 2-10
4.4 Monolithic Structure 2-12

2.2 CPU I/O Burst Cycle 4-3
2.4 Disoatcher 4-5

4.2 ShotTast-Job First Scheduling Algorithm (SJFS) 4-10
4.4 Round Robin Scheduling Algorithm 4-14
4.6 Multi Level Feedback Queues +18

4.2 lmplementation 5-o
4,4 Binary Semaphores 5-7

6.2 Reaciars and Wdters Prcblem 5-10

Process Synchronization 14

2.

6.1 The Bounded Butrer Problen 5-9
6.3 Dining Philosophers Problem &12

Deadlocks 20

3, Deadlock
3.1 Necessaty Conditions fot Deadlock 62

4.

6.1 Just lgnorc the Problem all together 6-5 6.2 Daadlock Detection 66
6.3 Reavery from Deadlock 6-7 6.4 Deadlock prevention &7
6.5 Deadlock Avoidance By Careful Allocation of Resource'-B

Introduction to OS

5.
6.

.i. @

7.

7. Banke/s Algorithm for a Single Resource 6-98. Banke/s Algorithm for Multiple Resources &9

Memory Management 32

3. Contiguous MemoryAllocation.................7-7
3.1 Single Paftition Allocation (Monoprogrcmming without Swapping or Paging) 7-T
3.2 Multiprogramming without Swapping or Paging i.e. Muftiprogramming with Fixed Paftition (MFT) 7-8
3.3 Muftiple Paftition Allocation (Multiprogramming with Variabte Paftitions) (MVT)7-9
3.4 Fragmentation 7-12

4. Free Space Management Techniques....7-13

6.

7.1 lnternal Operation of MMU 7-17
8. Page Replacement Algorithms 7-18

1.1 Address Binding 7-1
1.3 Static Linking 7-4
1 .5 Dynamic Linking and Shared Libraias 7-5

8.1 FIFO Algorithm 7-18
8.3 Algoithm (Least Recently Used) 7-20

3.1 Single Level Directory 8-6
3.3 Tree Structure Directories 8-B

7.1 FCFS Scheduling 9-9
7.3 Scan Scheduling 9-10
7.5 Look and C Look Scheduling 9-12

1.2 Logical Verses Physical Addrasses 7-3
1.4 Dynamic Loading 74
1.6 Overlays 7-5

8.2 Optimal Algonthn 7-19
8.4 Second Chanca Algorithm (MRU with Reference bit)7-21

3.2 Two Level Directoty 8-7
3:4 Acyclic Graph Dkectories &9

5.2 Buffeing 9-4
5.4 Spooling and Device Resavation 9-5
5.6 Kemel Data Sfrucfures 9-6
5.8 Memory Protection 9-7

7.2 Shoftest Seek Time First (SSTF) Scheduling g-10
7.4 C Scan (ChculatScan) 9-11

l0.l Segmentation with Paging 7-24
8. File System 161. Introduction and File Concepts........ B-1

1.1 File Operations 8-2

2.1 Sequential Access 8-3
2.2 Dircct Access 84
2.3 Other Access Mefhods 8-5

9.

4.1 Contiguous Allocation 8-10
4.2 Linked Allocation 8-11
4.3 lndexed Allocation 8-11

6. Free Space Management.. g-13
6.1 Bit Vectot 8-14 6.2 Linked List 8-14
6.3 Grouping 8-15 6.4 Counting 8-15

f/O System 20

4. Direct MemoryAccess (DMA)............9-3

5.1 l/O Scheduling 9-4
5.3 Caching 9-5
5.5 Enor Handling 9-6
5.7 l/O Protection 9-7
5.9 CPU Protection 9-7

Introduction to OS oll . @

Qfafre, I
TluTRoDUGTIoN To

OPeRATIIUG
SvsrEM

1. Introduction

An operating system is the program that is loaded into the computer and which co-ordinates all the
activities among computer hardware devices. It is an interface between user and computer. An
operating system makes everything in the computer to work smoothly and efficiently. It controls the
hardware in the computer peripherals and manages memory and files. It enables the user to
communicate with the computer and other software.

Examples of operating system include Microsoft Windows, Macintosh, Limx, Unix and DOS.

Definition

"An Operating System (OS) ls a
intermediary between the user of a

hardware."

program that acts as an

computer and the computer

The purpose of operating system is to provide an environment in
which a user can execute programs.

The primary goal of an operating system is thus to make the
computer system convenient to use.

The secondary goal is to use the computer hardware in an efficient
manner.

The components of a computer system are its hardware, software and data. The operating system
provides the means for the proper use of these resources in the operation of the computer system.

An operating system is similar to a government. Like a govemment, the operating system performs
no useful function by itself. It simply provides an environment within which other programs can do
useful work.

We can view an operating system as a resource allocator. A computer system has many hardware
and software resources that may be required to solve a problem. CPU time, memory space, file
storage space, input-output devices and so on. The operating system acts as the manager of these
resources and allocates them to specific program and users as necessary for tasks.

An operating system also acts as a control program. A control program controls the execution of
user programs to prevent errors and improper use of the computer. It is especially concerned with the
operation and control of input/output devices.

A more common definition of operating system is that it is the "one program running at all times on
the computer (usually called the Kernel) with all else being application program,'.

Components of a Computer System

Figure 1 .1 : Abstract view of the components of a computer system

Compiler Assembler Text Editor Database

system & Apptication prograp$vstem

tntrsdoo.ti.bn toro$

Main components of a computer system are:

Hardware

Operating system

Application programs

Users

The hardware i.e., Central Processor Unit (CPU), the memory and the Input/Output (I/O) devices
provides the basic computing resources for the system. The applications progran such as word
processors, spreadsheets, computers and the web browsers define the ways in which these resources
are used to solve users computing problems. The operating system controls the hardware and
coordinates its use among the various application programs for the various users.

2. Services Provided by OS

An operating system provides an environment for the execution of programs. The operating system
provides certain services to programs and to the users of those progmms.

Figure 1.2: A view of operating system services

User & Other System Programs

GUI Batch Command Line

User lnterface

System Calls

ml'@WF'"ffi;l ffil ;Tl

User interface: All operating systems have a User
Interface (UI). This interface can take several forms. e.g.,

Command Line Interface (CLI), Batch Interface or Graphical

user Interface (GUI).

Program execution: The system must be able to load a

program into memory and to run that program.

3. llO (Input/Output) operations: Running program may
require VO. For efficiency and protection users cannot control
VO devices directly. Therefore, the operating system must
provide some means to do I/O.

File system manipulation: Operating system reads and writes into a file. It is the most visible
service of an operating system.

Communications: Communications may be implemented via shared memory or by the
technique of message passing. Communication which takes place between the concurrent
processes can be divided in two parts:

a. Take place between the processes that are running on the same computer and the other.

b. Type of processes are those that are being executed on different computer systems

through a computer network.

Error detection: System must be able to detect CPU or memory failure. There are various
tlpes of errors that occur when the process is running. These errors may be caused by CPU,
memory hardwork, VO devices, etc. The job of operating system to keep track of the errors,
raise appropriate errors at the users screen.

Example, memory error, power failure, lack of paper or printer etc.

Resource allocation: Where there are multiple users or multiple jobs running at the same

time, resources must be allocated to each of them.

Accounting: The operating system keeps track of which users are using how much and what
kinds of computer resowces. This record keeping can be used for accounting or simply for
accurnulating usage statistics.

Protection and security: Protection involves ensuring that all access to the system resources
is controlled.

Security of the system starts with requiring each user to authenticate himself or herself to the

system, usually by means of a password to gain access to the system resources.

7

4.

6.

1

8.

9.

tniroauctio*,io.

Types of Operating System

Various types of operating systems have evolved over time as computer systems and users'
expectations of them have developed, i.e., as computing environments have evolved.

3.{ Simple Batch Operating System
(Long Term Scheduler)

A batch operating system normally reads a stream of separate jobs (from a card reader) each with its
own control cards that predefine what the job does. When the job is complete, its output is usually
printed (on a line printer). The definitive feature of a batch system is the lack of interaction between
the user and the job while that job is executing. The delay between job submission and job
completion (called turnaround time) may result from the amount of computing needed or from
delays before the operating system starts to process the job. In this execution environment, the CPU
is often idle. This idleness occurs because the speeds of the rnechanical VO devices are intrinsically
slower than those of electronic devices.

Figure 1.3

The introduction of disk technology has helped in this regard. Rather than the cards being read from
the card reader directly into memory and then the job being processed, cards are read directly from
the card reader onto the disk. The location of card images is recorded in a table kept by the operating
system. When a job is executed, the operating system satisfies its requests for card reader input by
reading from the disk. Similarly, when the job requests the printer to O/P a line, that line is copied
into a system buffer and is written to the disk. When the job is completed the O/P is actually printed.
This form of processing is called spooling.

[S - Simultaneous P - Peripherall
L O- Operation O-Online I

Figure 1.4

Spooling in essence, uses the disk as a huge buffer, for reading as far ahead as possible on
devices and for storing output files until the output devices are able to accept them.

Spooling is also used for processing datz atremote sites. Spooling has direct beneficial effect on the
performance of the system. For the cost of some disk space and a few tables, the computation of one
job can overlap with the VO of other jobs. Thus, spooling can keep both the CpU and VO devices
working at much higher rates.

3.2 Multiprogram Batch System

Spooling provides an important data structure: a job pool. A pool of jobs on disks allows the
operating system to select which job to run next, to increase CPU utilization. Thus, job scheduling is
possibly the most important aspect ofjob scheduling which is the ability to multiprogram.

input

512K
RAM

o.s.
JOBl
JO82

JO83

JO84

JO85

Figure 1.5: Memory layout for a multiprogram batch system

Multiprogramming is a feature of an operating system which allows running multiple program
simultaneously on CPU. It is a form of parallel processing in which several programs run at the same
time on a uniprocessor.

The idea of multiprogramming is asfollows:

The operating system keeps several jobs in memory at a time as

shown infigure 1.5. These set ofjobs is a subset ofjobs kept in job
pool. The operating system picks and begins to execute one of the
jobs in the memory eventually, the job may have to wait for some
task (example, anUO operation to compute).

In a non-multiprogram system, CPU would sit idle. ln a multiprogram system the operating system
simply switches to and executes another job. When that job needs to wait CPU will switch to another
job and so on.

Eventually, first job finishes waiting and gets CPU back. As long as there is always some jobs to
execute CPU will never be idle.

3.3 Time Sharing System (Middle Term Seheduler)

There are some difficulties with a batch system from the point of
view of the user, however since, the user cannot interact with the job
when it is executing the user must set up the conhol cards to handle
all possible outcomes and it can be extremely difficult to define
completely what to do in all cases.

Another difficulty is that program must be debugged statically, from snapshot dumps.

Time sharing or multitasking is a logical extension of multiprogramming. Multiple jobs are executed
by the CPU switching between them but the switches occur so frequently that the users may interact
with each program while it is running.

An interactive or hands-on computer system provides online communication between the user and
the system.

Time sharing system are developed to provide interactive use of a computer system at a reasonable
cost. A time shared operating system uses CPU scheduling and multiprogramming to provide each

user with a small portion of a time shared computer. Each user has atleast one separate program in
memory.

A program that is loaded into memory and is executing is commonly referred to as a process.

When a process executes, it specially executes for only a short time before it either finishes or needs
to perform interactive VO. Rather than let the CPU sit idle when the interactive t/p takes place, the
operating system will rapidly switch the cpu to the program of some other user.

A time shared operating system allows many users to share the computer simultaneously. Since each
action/command in a time shared system tends to be short only a little CPU time is needed for each
user' As the system switches rapidly from one user to the next, each user is given the impression that
he has his own computer whereas actually one computer is being shared among many users.

3.4 Real Time Systems

Real time systems are used when there are rigid time requirements on the operation of a processor
for the flow of data and thus is often used as a controlled device in a dedicated application. A real
time operating system has well defined fixed time constraints. Processing must bi done within the
defined constrains, or the system will fail. A real time system is considered to function correctly only
if it returns the correct result within any time constraints.

3.5 Glustered System

Multiprocessing system is similar to multiprogramming system,
except that there is more than one CPU available.

Like multiprocessor system, clustered systems gather together
multiple CPUs to accomplish computational work.

Clustering is usually used to provide high availability service. That is service will continue even if
one or more systems in the cluster fail. High availability is generally obtained by adding a level of
redundancy in the system. A layer of cluster software runJ on the cluster nodes. Each node can
monitor one or more of others. If the monitored machine fails, the monitoring machine can take
ownership of its storage and restart the applications that were running on the Liled machine. The
user and clients of the applications can see only a brief intemrption of sirvice.

lnt$dd*to*iid.ffi

Clustering can be structured asymmetrically or symmetrically. In asymmetrically clustering, one
machine is in not-standby mode while the other is running the application and in symmetric mode,
two or more hosts are running applications and are monitoring each other.

A cluster consists of several computer systems connected via a network. Cluster may also be u'sed to
provide high performance computing environments.

Figure 1.6: General structure of a clustered system

3.6 Distributed Operating Systems

A distributed system is a system consisting of two or more nodes, each node being a computer system

with its own memory some communication hardware and a capability to perform some contol functions

of an operating system.

Dis tributed operating system provides the following advantages :

i. Resource sharine

ii. Reliability

iii Computation speed-up

iv. Communication

v. Incremental erowth

SUnaMARY
. Operating system is a program that acts as on intermediary between the user of a computer and the

computer hardware.

r An operating system acts as a resource allocator.
o An operating system acts as an control program.

r Various services are provided by operating system like
a. User interface b. program execution
c. l/O operation d. File system Manipulation
e. Communications f. Error detection

o There are six types of operating system

a. Simple Batch operating system b. Multiprogram operating system
c. Time sharing operating system d. Real time operating system
e. Clustered operating system f. Distributed

PU |luestions
1Oct.15,11 Apr. 12 -2Ml

lQct.2014 - l Ml

lApr. 13. Oct.11 - 2Ml

lOct.12.Aor.11 - 2trll

lOct.2015 - 4Ml

IOct.2015 - 4hrll

lApr.2015 - 4Ml

lApr.2013 - 4Ml

IOct.2012 - 4Ml

lApr.2011 - 4Ml

l.

2.

a
J.

4.

Define Operating System

What is Distributed System? List types of distributed system.

What is meant by Multiprocessor System?

What is Multiprogramming?

Explain in detail the long term scheduler.

List the different types of operating system. Explain any one.

Explain medium terrn scheduler.

What is the purpose of an Operating System?

Explain different flrnctions performed by an Operating
System.

Explain basic services provided by an Operating System.

Q,
utsl0ll

1.

2.

3.

4.

5.

6.

efalfert 2

SvsTErut
STRUCTURE

User Operating System lnterface

There are two fundamental approaches for users to interface with the operating system. One
technique is to provide a command-line interface or command interpreter that ullo*r useis to directly
enter commands that are to be performed by the operating system. The second approach allows the
user to interface with the operating system via a graphical user interface or GUL

Command Interpreter

Some operating systems include the command interpreter in the
kernel. Others, such as Windows XP and IINIX. treat the command
interpreter as a special program that is running when a job is
initiated or when a user fust logs on (an interactive systems).
On systems with multiple command interpreters to choose frorn, the interpreters are known as shells,
For example, on LJNIX and Linux systems, there are several different shells a user may choose from
including the Bourne shell, C shell, Bourne-againshell, the Korn shell, etc. Most shells provide
similar functionality with only minor differences; most users choose a shell based upon personal
preference.

The main function of the command interpreter is to get and execute the next user-specified
command. Many of the commands given at this level manipulate files: creata, delete, list, print, copy,
execute, and so on. The MS-DOS and UNIX shells operate in this way. There are two general ways
in which these commands can be implemented.

In one approach, the command interpreter itself contains the code to execute the command.
For example, a command to delete a file may cause the command interpreter to jump to a section of
its code that sets up the parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter, since each command
requires its own implementing code.

An alternative approach used by UNIX, among other operating systems implements most commands
through system programs. In this case, the command interpreter does not understand the command in
any way; it merely uses the command to identify a fiIe to be loaded into memory and executed.

Thus, the LJNIX command to delete a file

rm file. txt

would search for a file called rm, load the file into memory, and execute it with the parameter

file.txt. The fi.rnction associated with the rm command would be defined completely by the code in
the file rm. In this way, programmers can add new commands to the system easily by creating new
files with the proper names. The command-interpreter program, which can be small, does not have to
be changed for new commands to be added.

Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user friendly graphical user

interface or GUI. Rather than having users directly enter commands via a command-line interface, a
GUI allows a mouse-based window-and-menu system as an interface. A GUI provides a desktop

metaphor where the mouse is moved to position its pointer on images, oricons, on the screen (the

desktop) that represent programs, files, directories, and system functions. Depending on the mouse
pointer's location, clicking a button on the mouse can invoke a program, select a file or directory
known as a folder or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place in the early 1970s at

Xerox PARC research facility. The first GUI appeared on the Xerox Alto computer in 1973.

However, graphical interfaces became more widespread with the advent of Apple Macintosh
computers in the 1980s. The user interface to the Macintosh Operating System (Mac OS) has

undergone various changes over the years, the most significant being the adoption of the Aqua
interface that appeared with Mac OS X. Microsoft's first version of Windows version 1.0 was based

tntr.s$uuieh*o'.O$ $ydiememritiira

upon a GUI interface to the MS-DOS operating systenr. The various versions of Windows systems

preceeding this initial version have made cosnretic changes to the appearance of the GUI and several
enhancements to its functionality, including the Windows Explorer Commercial versions of LINIX
such as Solaris and IBM's AIX system. However there has been significant development in GUI
designs from various open source projects such as K Desktop Environment (or KDE) and the

GNOME desktop by the GNU project. Both the KDE and GNOME desktops run on Linux and

various LINX systems and are available under open-source licenses, which mean their source code

is in the public domain. The choice of whether to use a command-line or GUI interface is mostly one

of personal preference. As a very general rule, many UNIX users prefer a command-line interface as

they often provide powerful shell interfaces.

Alternatively, most Windows users are pleased to use the Windows GUI environment and almost
never use the MS-DOS shell interface.

The various changes undergone by the Macintosh operating systems provide a nice study in contrast.
Historically, Mac OS has not provided a command line interface, always requiring its users to
interface with the operating system using its GUI. However, with the release of Mac OS X (which is
in part implemented using a UNIX kernel), the operating system now provides both a new Aqua
interface and command-line interface as well.

The user interface can vary from system to system and even from user to user within a system.

It typically is substantially removed from the actual system structure. The design of a useful and

friendly user interface is therefore not a direct function of the operating system.

2. System Galls

Systems calls provide the interface between a process and the OS.
These calls are generally available in the assembly language
instructions. Certain systems allow system calls to be made directly
from a higher level language program in which the calls normally
resemble predefined function.

The request and the release ofresources are system calls.

For example, request, release of device, open, close of file, allocate and free memory.

System calls provides the interface between a process and the operating system. These calls are
generally available as assembly language instructions.

2'rot'[n1!:.rm)

,Define'system oall, -;. .

.Explaln:fhb systBrn calls '

H:11fi1l';,ffiYi*',t-'
',

octz0ra - !M,. .:,, ... ,

List,and: Ejplain rsygtgrrl :

calts retated' to,Deviie.:
j:

-

It{anagemgnt,;,' ;;.r':' ; .'''''''

taabauai*ibrosi

'ii.ii,tr$$is#i$#
Some systems may allow system calls to be made directly from a higher level language program, inthis case the calls normallY reassemble predefined functions or subroutine calls. They may generate acall to a special run{ime routine that makes the system call.

System calls can be roughly grouped intofollowing categories:

i. Process or Job Control

eoffii*t
program needs to be able to halt execution either normally (end) or abnormally

Process Control
a. End abort
b. Load execute
c. Create process, terminate process
d. Allocate a file memory

ii. File Management
a. Create file, delete file
b. Open, close file
c. Read, write reposition file.

iii. DeviceNlanagement

A process may need several resources to execute main memory, disk drives access to file, etc.If the resources are available they can be granted and control can be returned to the userprocess.

a. Request device, release device
b. Logically attachor detach devices

iv. Information Maintenance
Operating system keeps information about all
this information.

a. Get system data, set system data
b. Get/set time date.

c. Get/set process, file or device attributes.

v. Communication

lts processes and system calls are used to access

There are two common models of interprocess communication: the message passing modeland the shared memory model.

In the message passing model, the communicating processes exchange messages.with one-another to transfer information.

vl.

rtijl*#tffii$ffi4ffi

In the shared memory model, processes use shared memory, create and shared memory attach
system calls to create and gain access to regions of memory owned by other processes.

a. Create delete communication

b. Send/receive messages

System Program (SP)

Systemprograms,a1soknownassystemutilities,provideaeonffi
program development and execution. S.P. are divided into following categories:

File Management: These progmms create, delete, copy, rename, print, dump, list the
files.

b. Status information' These are used to get information
about system e.g., the system program that can use to
get date, time of system, amount of available memory,
amount of free memory etc.

c. File modification: To create file and edit the content of
files we can have text editor.

Programming language support: Compilers, assembler, debuggers and interpreter for
common programming languages are provided.

Program loading and execution.' System program like loaders, links are provided.

3. Architecture of Gomputer System

Computer architecture is the conceptual design and fundamental operational structure of a computer
system. It is a blueprint and functional description of requirements (especially speeds and

interconnections) and design implementations for the various parts of a computer focusing largely on
the way by which the Cenfial Processing Unit (CPU) performs internally and accesses addresses in
memory. It may also be defined as the science and art of selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. "Architecture"
therefore typically refers to the fixed internal structure of the CPU (i.e. electronic switches to
represent logic gates) to perform logical operations, and may also include the built-in interface
(i.e. opcodes) by which hardware resources (i.e. CPU, memory, and also motherboard, peripherals)

may be used by the software. It is frequently confused with computer organization. But computer
architecture is the abstract image of a computing system that is seen by a machine language (or

d.

e.

assembly language) programmer, including the instruction set, memory address modes, processor

registers, and address and data formats; whereas the computer organization is a lower level, more

concrete, description of the system that involves how the constituent parts of the system are

interconnected and how they interoperate in order to implement the architectural specification.

Figure 2.1

Figure 2.1 atypical vision of a computer architecture as a series of abstraction layers: hardware,

firmware, assembler, kernel, operating system and applications

Abstraction Layer

An abstraction layer (or abstraction level) is a way of hiding the implementation details of a
particular set of functionality. Perhaps the most well known software models which use layers of
abstraction are the OSI 7 Layer model for computer protocols, OpenGL graphics drawing library,

and the byte stream I/O model originated by Unix and adopted by MSDOS, Linux, and most other

modern operating systems. In computer science, an abstraction level is a generalization of a model or

algorithm, away from any specific implementation. These generalizations arise from broad

similarities that are best encapsulated by models that express similarities present in various specific

implementations. The simplification provided by a good abstraction layer allows for easy reuse by

distilling a useful concept or metaphor so that situations where it may be accurately applied can be

quickly recognized. A good abstraction will generalize that which can be made abstract; while

allowing specificity where the abstraction breaks down and its successful application requires

customization to each unique requirement or problem.

$yslarng trlrg

Firmware

In computing, firmware is software that is embedded in a hardware device. It is often provided on
flash ROMs or as a binary image file that can be uploaded onto existing hardware by a user.

Firmware is defined as:

i. The computer program in a Read-Only Memory (ROM) integrated circuit (a hardware part
number or other configuration identifier is usually used to represent the software);

ii. The erasable programmable Read-Only Memory (EPROM) chip, whose program may be
modified by special external hardware, but not by [a general purpose] application program.

iii. The electrically Erasable Programmable Read-Only Memory @EPROM) chip, whose
program may be modified by special electrical external hardware (not the usual optical light),
but not by [a general purpose] application program.

Assembler

An assembly language program is translated into the target computer's machine code by a utility
program called an assembler. Typically a modern assembler creates object code by translating
assembly instruction mnemonics into opcodes, and by resolving symbolic names for memory
locations and other entities. The use of symbolic references is a key feature of assemblers, saving
tedious calculations and manual address updates after program modifications.

Kernel

ln computing, the kernel is the central component of most computer operating systems (OSs). Its
responsibilities include managing the system's resources and the communication between hardware
and software components. As a basic component of an operating system, a kernel provides the
lowestlevel abstraction layer for the resources (especially memory, processor and I/O devices) that
applications must control to perform their function. It typically makes these facilities available to
application processes through inter-process communication mechanisms and system calls. These
tasks are done differently by different kernels, depending on their design and implementation. While
monolithic kernels will try to achieve these goals by executing all the code in the same address space
to increase the performance of the system, micro kernels run most of their services in user space,
aiming to improve maintainability and 9 modularity of the code base. A range of possibilities exists
between these two extremes.

Sretdn,stru*una

Figure 2.2

Figure 2.2 shows a kernel connects the application software to the hardware of a computer.

3. { Operating System

An operating system (OS) is a computer program that manages the hardware and software resources
of a computer. At the foundation of all system software, an operating system performs basic tasks
such as controlling and allocating memory, prioritizing system requests, controlling input and output
devices, facilitating networking, and managing files. It also may provide a graphical user interface
for higher level functions. It forms a platform for other software.

Application Software

Application software is a subclass of computer software that employs the capabilities of a computer
directly to a task that the user wishes to perform. This should be conhasted with system software
which is involved in integrating a computer's various capabilities, but typically does not directly
apply them in the performance of tasks that benefit the user. In this context the term application
refers to both the application software and its implementation

..'':'{e}-:'...j:'..l'i.:1''l'l]''$yst€m.$'triJetur'e'

Operating System Structure

An operating system provides the environment within which programs are executed. One can view
an operating system from various angles. One is by examining the services it provides. Another is by
looking at the interface it makes available to users and programmers. Third is by disassembling the
system components and their interconnections. Whenever we want to build a large system, we
typically break it into smaller components.
Operating system is divided in two parts:

i. Kernel: This is the innermost layer of operating system close
to the hardware and it controls the actual hardware. It is the
heart of the operating system. It consists of routines, which
are required very often and almost all the time.

ii. Special routines: These are loaded from the disk to the
memory as and when required. It saves the usage of memory
but extra time is required for loading and unloading the
routines.

Kernel

Special Routines

Application Programs

Figure 2.3: Structure of operating system

The operating system structure is a broad framework that unifies many features and services
provided by the operating system.

Operating systems are broadly classified into following categories:

i. Simple structure

ii. Layered structure

iii. Microkernel structure

iv. Monolithic structure

4.1 Simple Structure

Some commercial operating systems do not have well-defined structure. Such operating systems are
initially designed as small and simple. MS-DOS is an example of such operating system. When it

rffi
was designed and implemented originally by few people, they had no idea about the popularity of
this system.

It was designed to provide number of functions using very less memory space. So it was not properly
divided into modules. Also, the interfaces and functionality levels are not well separated.

Figure 2.4: MS-DOS layer structure

As shown infigure 2.4,the application programs can directly access the device drivers and resident
system programs, due to which MS-DOS is vulnerable to enant programs and crashes the entire
system. MS-DOS was designed for Intel 8088, and was unable to provide dual mode and hardwate
protection.

Another example of limited structuring is the original UNIX operating system. LINIX operating
system was initially limited by hardware functionality.

4.2 Layered Structu re

The components of layered operating system are organized into modules. These modules are layered
one on top of the other, i.e., a top down approach is provided. A set of functions is provided by each
module that is called by other modules. The layered operating system structure with hierarchical
organization of modules is shown infigure 2.5.

System verification and debugging is simplified due to such approach. The first layer uses only the
basic hardware to implement its fturctions, so I is easy to debug the first layer without any concern
for the rest of the system. The second layer can be debugged only after debugging the first layer and
assuming the correct functioning of the first layer and so on.

Application
Program

Memory and l/O Device Management

Figure 2.5: Layered operating system

If any error is found during the debugging of a particular layer, the error must be on the layer,
because the lower layers are already debugged. That is in this approach, the Nth layer can access
services provided by the (N-l)* layer and provide services to the (N+l)th layer. Thus, the operating
system is debugged starting from the lowest layer, adding one layer at a time until the whole system
works correctly.

The operating system can be enhanced easily by using the layered structure; one entire layer can be
replaced without affecting other parts of the system. Layered operating system gives low application
performance in comparison to monolithic operating system.

Examples of layered operating systems are Multics and UND(.

4.3 M icrokernel Structu re

Microkernel does not mean small system. The word 'micro' means the kernel providing minimum
functions that allow user-level system processes to perform operating services efficiently. The
microkernel implements essential core-operating system functions. The functions include process
management, inter-process communication, address space management, and hardware abstraction.

A microkernel is a tiny operating system core to be used in next-generation operating system as it
provides foundation for modular and portable extensions of operating systems. A microkernel
operating system provides unprecedented modularity, flexibility, and portability.

Client
Application

Itil-iil;;l t Fi;_l
I Interface | | server

I

Display
Server

User Mode
Kernel Mode

Send -----+
Hardware

Reply +_-
Figure 2.6: Microkernel operating system

ln microkernel structure, the operating system is divided into several processes, each of which
implements a single set of services, example, VO servers, memory server, process server, threads
interface system. Each server runs in user mode, and it provides services to the requested client. The
client can be either another operating system or application program. The client requests a service by
sending a message to the server. This communication takes place by using message passing method.
The microkernel running in kernel mode delivers the message to the appropriate server. The server
then performs the operation and microkernel passes the results to the client in another message, as

shown infigure 2.6. Components above the microkernel communicate directly with one another by
passing messages through microkernel itself. The microkernel controls the traffic. It validates
messages and passes them between the components and grants access to hardware.

Since most of the services are running as a user processes rather than kernel processes, the
microkernel structure provides more security and reliability.

4.4 Monolithic Structure

A Monolithic kernel is one single large program, composed of several logically different program
pieces. The components of monolithic operating system are organizedhaphazardly and any module
can call any other module without any reservation. Similar to the other operating systems,
applications in monolithic OS are separated from the operating system itself, i.e., operating system
code runs in a privileged processor mode (kernel mode), which has access to system data and to the

rUiro :rriti #tsi

hardware; applications run in a non-privileged processor mode (user mode), with a limited set of
interfaces available and with limited access to system data. The monolithic operating structure with
separate user and kernel processor mode is shown infigure 2.7.

Operating
System
Procedures

Figure 2.7: Monolithic operating system

When a user mode program calls a system service, the processor traps the call and then switches the
calling thread to kernel mode. Completion of system service, switches the thread back to the user
mode, by operating system allows the caller to continue.

The monolithic structure does not enforce data hiding in the operating system. It delivers better
application performance, but extending such a system can be difficult work because modifying a
procedure can introduce bugs in seemingly unrelated parts of the system. Example of monolithic OS
is MS-DOS.

SUnaMARY
o An operating system provides the environment within which programs are executed.
r The design of a new operating system is a major task.
. System calls provide the interface between a process and the operating system.
. An operating system structure is a broad framework that unifies many features and services provided by

the operating system.

WPU 0uestions
tOct.2015 - 2Ml

lAor.2015 - 2Ml

lApr.2015 - 2Ml

lOct.2014 - 2Ml

tOct.2015 - 4Ml

IOct.2014 - 4Ml

lOct.2014 - 4Ml

lOct.2011 - 4Ml

tAor.2012 - 4Ml

1.

2.

J.

4.

What is command interpreter?

What is the purpose of command interpreter?

Define system program.

List system calls related to communication.

Define system call. Explain the system calls related to device
manipulation.

List and Explain system calls related to Device Management.

Explain architecture of Computer System.

Describe the Struchre of Operating System with the help of a
suitable diagram.

List and explain different types of system programs.

ut$r011

1.

2.

J.

4.

5.

Qr

eia'lfer, 3

PnocEss
MANAGEMENT

1. Process Goncept

The concept of process is the heart of operating systems.

Informally, a process is a program in execution.

A process is more than the program code (sometimes known as the text section or code segment).

It also includes the current activity as represented by the value ofprogram counter and the contents
of the processor register.

A procass generally includes the process stack, containing temporary data and a data section

containing global variables.

Typically, a batch job is a process and a time shared user program is a process, a system task such as

spooling is also a process.

Process execution is a cycle of CPU execution and I/O wait. Processes alternate back and forth
between these two states. Process execution beeins with a CPU burst.

It is followed by VO burst which is followed by another CPU burst then another VO burst and so on.
Eventually the last CPU burst will end with a system request to terminate execution.

Functions of Process

i. Creating and removing processes.

ii. Controlling the progress of processes that is, ensuring that
each logically enabled processes make progress towards its
completion at a positive rate.

iii. Allocating hardware resources among processes.

iv. Providing a means of communicating messages or signals
among processes.

v. Acting on exceptional conditions arising during the execution of a process, including
intemrpts and arithmetic errors.

Once created, a process becomes active and eligible to compete for system resources such as
processor and VO devices. Each active process is an individually schedulable entity.

A process is a dynamic concept that refer to a program in execution which undergoes frequent state
and attribute changes.

2. Process State

As a process executes, it changes state. The state of a process is defined in part by the current
activity of the process. Each process may be in one of the following states.

Figure 3.1: Process state diagram

1,(3r

Hffiiafib$$#r

i. New: The process is being created.

ii. Running: Instructions are being executed.

iii. Waiting: The process is waiting for some event to occur.
iv. Ready: The process is waiting to be assigned to a processor.
v. Terminated: The process has finished execution.

The state ofa process is defined in part by the current activity ofthat process.

Process execution is an alternating sequence of CPU and VO bursts beginning and ending with the
CPU burst.

The process states can be further refined. Since the CPU may be shared among several process, an
active process may either be waiting for the CPU or executing on it. A process which is waiting for
the CPU is ready. A process, which has been allocated the CPU is running.

Whenever the CPU becomes idle, th'e operating system must select one of the processes in the ready
queue to be executed. The part of the operating system which carries out this selection process is
called as short-term scheduler or CPU scheduler. The scheduler selects from among the process
in memory that are ready to execute and allocates the CPU to one of them. The algorithm used by
CPU scheduler is called as CPU schedulins alsorithm.

3, Process Gontrol Block

The operating system groups all information that it needs about a particular process into a data
structure called a Process Descriptor or Process Control Block (PCB).

Whenever, a process is created the operating system creates a colresponding process control block to
serve as its run-time description during lifetime of the process. When process terminates, its PCB is
released to pool offree cells.

Process Number

Program Counter

Register

Memory Information

List of Open Files

+r,aoriizrta', ,t'ff
Explain'P€8, with p.rgp,er

fi;ilil #u'
Explaih P.'rocese: rCo.nhot,

: r
:Bloclc-(FOB)'i*detail :wlthi

3

ne.h+!n,of dJ$Ti i.j

1.

,,

t$ltiili*ltfit:ir

Process state: It may be ready, running, waiting, halted and so on.

Program counter: The counter indicates address of next instruction to be executed for this
process.

CPU registers: Along with program counter this state information must be saved when an
interrupt occurs, to allow the process to be continued correctly afterwards

3.

4.

f,.

6.

7.

CPU scheduling information: This information includes process,
scheduler queue and other scheduling parameters.

Memory management information: This information include value

pictures pointer to

of base and limit
registers, page tables or segment tables.

Accounting information: This information includes the amount of CPU and real-time used.
time limits, account numbers, job or process number and so on.

I/O states information: This information includes list of the VO devices allocated to this
process, a list ofopen files and so on.

4. Gontext Switch

Switching the CPU to another process requires saving the state of the old process and loading the
saved state for the new process. This task is known as Context switch.

The context of a process is represented in the PCB of a process, it includes the value of the CPU
registers, the process state and memory management information. When a context switch occurs, the
kernel (operating system) saves the context of the old process in its PCB and loads the saved context
ofthe new process scheduled to run.

Context switch time is pure overhead, because the system does no useful work while switching. Its
speed varies from machine to machine depending on the memory speed, the number of registers that
must be copied and the existence of special instructions.

5. Operations on Processes

The processes in the system can execute concurrently and they must
be created and deleted dynamically. Thus, the operating system must
provide a mechanism for process creation and termination.

,pra$$i*rffiiiu##r

5.{ Process Greation

A process may create several new process via a create process system call during its course of
execution. The creating process is called a parent process whereas the new processes are called as
the child of that process. Each of these processes may in turn create other process forming a tree of
processes.

Figure 3.2: Tree of process

A process during execution needs various resources like CPU time, memory files, VO devices etc.
When a process creates sub-processes the sub-process will also require some of ths resources. The
sub-process may be able to obtain its resources directly from the operating system or it may be
constrained to a subset ofthe resources ofthe parent process.

The parent may have to partition its resources among its children or it may be able to share some
resources among several of its children.

Restricting a child process to a subset of the parents resources prevents any process from
overloading the system by creating too many sub-processes.

When a process creates a new process, following two possibilities exists in terms of execution'.

i. The parent continues to execute concurrently with its children.

ii. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process (child
process)

a. The child process (new process) is a duplicate ofthe parent process.

b. The child process has a program loaded into it.

t*t#dud tjo'rs.bi i,ii.rii#i ii#,0,##i$*effi#s#

when a process isFollowing are the functions/tasl<s pedormed by the operating system (Kernel)
created.

i. It allocates a slot in the process table for new process.

ii. It assigns unique ID number to the child process.

iii. It makes a logical copy of the context of the parent process since, certain portions of a process,
such as a text region, may be shared between processes the kernel can sometimes increment a
region to a new physical location in memory.

iv. It increments file and inode table counters for files associated with the process.

v. It returns ID number of child to parent process and a value 0 (zero) to child process.

5.2 Process Termination

A process terminates when it finishes executing its final statement and asks the operating system to
delete it by using the 'exit' system call.

At that point the process may return data (Output) to its parent process (via the 'wait' system call).

Process in IINIX operating system terminate by executing the exit system call. An exiting process
enters zombie state, releases all its resources dismantles its context except for its slot in the process
table.

Syntax

exit (status)

The value of the status is retumed to the parent process for its examination. Processes may call exit
explicitly or implicitly at the end of the program.

All the resources of the process are deallocated by the operating system. Termination might occur
under additional circumstances.

For example,

A process can cause the termination of another process via an appropriate system call (example,
abort).

Usually only the parent of the process that is to be terminated can invoke such a system call, otherwise
users would arbitarily keep aborting each others job.

A parent therefore needs to know the identities of its children. Thus when one process creates a new
process the identity of the newly, created process is passed to the parent.

1.

)

iirrjirliiiirt'ii

A parent can terminate the execution of its children for a number of reasons like:

i. If the child has executed its usage of some of the resources that it has been allocated.

ii. The task assigned to the child is no longer required.

iii. The parent is terminating in this case the operating system does not allow a child to continue if
its parent terminates. So if a process terminates (either normally or abnormally) then all its
children must also be terminated. This is called as cascading termination and is normally
initiated by the operating system.

6. Types of Processes

Processes can be ofthree types

User process: User process is a process associated with the terminal.

Daemon process: Daemon process do a system wide function such as administration and
control of networks, execution of time dependent activities, line printer spooling. These
processes are like user processes in that they run at user node and make system calls to access
system services.

Kernel process: The kernel processes execute only in kemel mode. Kernel process are similar
to Daemon processes, they provide system wide services but they have greater control over
their execution as it is a part of the kernel. They can access kernel algorithms and data
structures directly without use of system calls. But, they are less flexible as kernel need to
recompile them to change them.

7. Signals
Signals inform processes of the occurrence of a synchronous events. Processes may send signals
with the kill system call or kernel may send signals internally.

Signals are used on termination of process, when a process exits or when a process invoke signal
system call on the termination of child process.

Signals are caused by an unexpected error condition during a system call, such as making a
nonexistent system call.

Signals are used for tracing execution ofthe process.

3.

i

lOct.1 5,1 4.1 1.Aor.1 2 - 2 Ml

lApr.15,Oct.12 - 2Ml

lOct.2015- 4Ml

lApr.2015 - 4Ml

lApr.2015 - 4Ml

IAor.2013 - 4Ml

IOct.2012- 4Ml

lApr.2012- 4Ml

IOct.11.Apr.2011- 4Ml

J.

+.

5.

What do you mean by context switch?

What is meant by Process?

Explain in detail the process control block.

In normal mode of operation. List and explain the

sequence of utilization of resources by process.

Explain operations on process in detail.

Explain PCB with proper diagram.

Explain in detail the various process states with the help
of diagram.

Explain the Creation and Termination of Processes.

Explain Process Control Block (PCB) in detail with the
help of diagram.

{h
utst0tl

6.

SUnaMARY
r A process is more than a program code. A process is a program in execution.

. There are various states of a process.

a. New b. Waiting

. c. Running d. Terminated e. Ready

o The operating system groups all information that it needs about a particular process into a data structure
called as a process Descriptor or Process Control Block (PCB).

. Switching the CPU to another process requires scoring the state of the old process and loading the
saved state for the new Drocess. This task is known as context switch.

r Various operation on the process can be performed like.

a. Process creation: The create$ system call is used for creating a new process.

b. Process termination: The exit$ system call is used for exiting from the process.

o There are three types of process in Unix operating system.

a. User processes
b. Daemon orocesses
c. Kernel processes

. Signals are used to inform the processes for the occurrences of the synchronous events.

PU |Iuestions

e/44let, 4

GPU
SCHEDULTNG

1. Introduction

CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU among

processes, the operating system can make the computer more productive. In this chapter, we

introduce basic CPU-scheduling concepts and present several CPU-scheduling algorithms. We also

consider the problem of selecting an algorithm for a particular system.

Scheduling Goncepts

ln multiprogramming environment, there may be the situation where two or more processes are

simultaneously in ready state and if only one CPU is available, then a choice has to be made as to

which process should execute next. The part of operating system that makes this choice is called

scheduler and the algorithms it uses are called scheduling algorithms,

A major issue related to scheduling is when to make scheduling decisions.

There are many situations when scheduling is required.

i. When a new process is created, then decision regarding whether parent or child process should
be executed.

ii. When a process exits, then some other process must be selected from set of ready states. If no
process is in ready state, a system supplied idle process is executed.

iii. When a process blocks on VO, on a semaphore, or for some other reason, another process has
to be selected to run.

iv. When anUO intemrpt occurs, a scheduling decision may be made.

Scheduling algorithms can be divided into two categories depending on how they deal with clock
interrupts:

A non-preemptive scheduling algorithm picks a process to run and then just lets it run until it blocks
or until it voluntarily releases its CPU. In other words, no scheduling decisions are made during
clock intemrpts. After clock intemrpt processing has been completed, the process that was running
before the intemrpt is always resumed.

A Preemptive scheduling algorithm picks a process to run and lets it run for a maximum of some
fixed time. If it is still running at the end of time interval, it is suspended and the scheduler picks
another process to run.

Dffirent scheduling algorithms are needed in dffirent envitronment and dffirent application areas,
Three dis tinguishabl e environments arei

a. Batch: No users are impatiently waiting for quick response. This approach reduces process
switches thus improving performance.

b. Interactive: Here preemption is essential to keep one process from hogging the CPU and
denying service to others. One process might shut out all others indefinitely. Hence
preemption is needed to prevent this behavior.

c. Real time: Here preemption is sometimes not needed since the processes know that they may
not run for long periods of time and usually do their work quickly.

Goals of scheduling algorithms also dffir under dffirent circumstances as can be see.n from
following chart:

All systems
Fairness: Giving each process a fair share of CPU
Policy enforcement'. Seeing that stated policy is carried out
Balance: Keeping all parts of system busy

Batch systems
Throughput: Maximize jobs per hour
Tumaround flme: Minimize time between submission and termination
CPU utilization: Keep CPU busy all the time

Interactive systems
Response flme: Respond to requests quickly

P ro po rtion al ity: Meet users expectations

Real time systems
Meeting deadlines: Avoid losing data
Predictability: Avoid quality degradation in multimedia systems

2.1 GPU Scheduler (Short Term Scheduler)

An interesting property of processes is that process execution
consists of a cycle of CPU execution and VO wait. Processes
alternate back and forth between these two states.

Whenever the CPU becomes idle, the operating system must select one of the processes in the ready
queue to be executed. The part of the operating system which carries out this selection process is
called as 'Short-term scheduler or CPU scheduler.'

The scheduler select from among the processes in memory that are ready to execute and allocates the
CPU to one of them. The algorithm used by CPU scheduler is called as 'CPU scheduling
algorithm.'

2.2 GPU l/O Burst Gycle

The success of CPU scheduling depends on as observed property of processes. Process execution

consists of a cycle of CPU execution and VO wait. Processes alternate between these two states.

Process execution begins with a CPU burst that is followed by an VO burst, which is followed by
another CPU burst, then another VO burst and so on. Eventually, the final CPU burst ends with a

system request to terminate execution. An VO bound program typically has many short CPU bursts.

.

Load store
add store
read from file

I wait tur llol

store increment
index
write to file

marr-;T6]

load store
add store
read from file

tffit

CPU burst

l/O burst

CPU burst

l/O burst

CPU burst

l/O burst

Figure 4.1: Alternating sequence of CPU and l/O bursts

2.3 Preemptive and Non-preemptive Scheduling

1. Non-preemptive scheduling: With non-preemptive case, once CPU is given to a particular
process, it will not release the CPU till its CPU burst time is over.

Characteristics of Non- Preemptive Scheduling

a. In non preemptive system, short jobs are made to wait by longer jobs but the overall
treatment of all processes is fair.

b. ln non-preemptive, response times are more predictable because incoming high priority
jobs cannot displace waiting jobs.

c. In non-preemptive scheduling a scheduler executes jobs in the following two situations.

i. When a process switches from running state to the waiting state.

ii. When a process terminates.

2. Preemptive scheduling: The strategy of allowing processes
that are logically, runnable to be temporarily suspended is
called preemptive scheduling and it is contrast to the run to
completion method.

A scheduling discipline is preemptive if once a process has

been given the CPU can take away.

Differentiate between the Preemptive and Non-preemptive
Scheduling

2.4 Dispatcher

The dispatcher is a module that gives control of the CPU to the

process selected by the short term scheduler. The time it takes for
the dispatcher to stop one process and start another running is known

as'dispatch latencing.'

Functions of Dispatcher

Switching context

Switching to user mode

Jumping to the proper location in the user program to restart that program.

+.j

t. ln this, once the CPU is allocated
to the process, the process keeps
the CPU till the time it terminates
or it switches to wait state.

In this, once the process is allocated
to CPU, it can be preempted any
time as a result of occurrence of
higher priority process or an
interrupt occurs or process finishes
its l/O.

il. Context switch is not required. Requires context switching.

iii. Always supports single
programmrng.

Supports multiprogramming.

iv. Suffers from deadlock. Suffers from starvation.

Process waiting time is less. Waiting time of low priority
processes is more.

vt. Used in Windows 3.x. Windows 95 is used till now in all
next generations of windows.

Scheduling Griteria

Different CPU scheduling algorithms have different properties and the choice of a particular
algorithm may favour one class ofprocesses over another.

The criteriafor good scheduling algorithm are:

1. CPU Utilization: We want to keep the CpU as busy as
possible. Conceptually, CPU utilization can range, from 0 to
I00%.ln a real system, it should range from 40% to 90oh.

2. Throughput: If the CPU is busy executing processes, then
work is being done. One measure of work is the number of
processes that are completed pre unit time called throughput.
For long process, this rate may be one process per hour, for
short transactions it may be ten processes per second.

ln short throughput is: "The number of processes that are
completed per time unit is called throughput it should be
maximum."

3. Turnaround time: The interval from the time of submission
of a process to the time of completion of a process is called
turnaround time and it should be minimum.

The turnaround time is the sum of the periods spent waiting to
get into memory, waiting in the ready queue, executing on the
CPU and doing VO.

Waiting time: Waiting time is the period spent waiting in the
ready queue by a process. It should be minimum.

The CPU scheduling algorithm does not affect the amount of
time during which a process executes or does VO. ft affects
only the amount of time that a process spends waiting in the
ready queue.

5. Response time: Response time is the time from the
submission of a request until the first response is produced.
This measure called the response time, is the time it takes to
start responding, not the time it takes to output the response.

Allocation of the time slice to a process/thread which is waiting for
CPU time is referred as burst time. Burst in computer language is
referred when a process/thread needs cpu time. oS allocates the
time slice to each process/thread.

4.

4. Scheduling Algorithm

CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to

be allocated to the CPU. There are many different CPU scheduling algorithms.

4.1 First Gome First Serve Scheduling (FGFS)

It is the simplest CPU scheduling algorithm. In this scheme, the process that requests the CPU first is

allocated the CPU first. The average waiting time under the First Come First Serve scheduling

(FCFS) policy is often quite long. The FCFS scheduling algorithm is NON-PREEMPTIVE. The

implementation of the FCFS policy is easily managed with a FIFO queue. When a process enters the

ready queue, its PCB (Process Control Block) is linked onto the tail of the queue. When the CPU is

free it is allocated to the process at the head of the queue. The running process is then removed from

the queue. The code for FCFS scheduling algorithm is simple to write.

Examples

1.

Solution

If the process arrive in the order Pt,Pz,Pl and are served in FCFS order, we get the result as shown

in the following Gantt Chart, which is a bar chartthat illustrates a particular schedule including the

start and finish times of each of the participating process.

Gantt chart

302724

ffi
Pr 24

Pz 3

Pe 3

Pz PgPr

$,Ft,il$nh6dufifl0

Now the average waiting time for the processes P1, P2 and P3 as follows

Pr :0 ms (milliseconds)

P2:24 ms

P3:27 ms

Pr+Pz*Pr
Average waiting time (AWT):

o+zq+zl

: 17 milliseconds

.'. Average waiting time: 17 ms

Now,

We need to calculate the average turnaround time.

.'. Average Turnaround Time (ATT): Waiting Time (WT) * Burst Time (BT)

.'. Pr=0+24=24

Pz:24 + 3:27

Pt:27+3:30
Pr+Pr*PrATT:--

J

_(24+27+30)
aJ

:27 msec.

Average turnaround time: 27 ms

81=-a
J

)

r.Bil*ffiIrl$
Pr 5

Pz 6

Ps 2

Pa 3

iiiiritlii'iitii

Solution

The Gantt chart for the above processes would be

Average Waiting Time

Pr :0 ms

P2=5ms

P3:11ms

Pa: 13 ms

Pr*Pz*P:*Pq
AWT:

4

29:-
4

AWT = 7.25 ms

Now,

We need to calculate the average turnaround time

Average Turnaround Time :

Pr=0+5:5ms

Pz:5 * 6: 11 ms

P:=11+2:13ms

P+:13+3:16ms

Pr*Pz+P3+P4

't61311

+

0+5+11+13

ATT =
4

5+11+13+16 45

ATT :11.25 ms

.'. Average Turnaround Time = 11.25 ms

Pr Pz Ps Pq

4.2 Shortest-Job First Scheduling Algorithm (SJFS)

This algorithm associates each process with the length of the next CPU burst. When the CPU is
available it is assigned to the process that has the smallest next CPU burst. If two process have the
same length for next CPU burst, FCFS scheduling is used to break the tie. The shortest job first
scheduling algorithm may be either preemptive or non'preemptive.

The choice arises when a new process arrives at the ready queue while a previous process is
executing. The new process may have a shorter, next CPU burst than what is left of the currently
executing process.

A preemptive SJFS algorithm will preempt the currently executing process, whereas a non-
preemptive SJFS algorithm will allow the cunently running process to finish its CPU burst.

Preemptive SJF scheduling is sometimes called as Shortest Remaining Time First Scheduling
(SRTFS) algorithm.

Examples

1. Non-Preemptive SJF algorithm

il '
i*i#$

Pr o

9z 8

Pg 7

Pa 3

Solution

Gantt chart

n

Average Waiting Time for

P1 =3ms

P2: 16 ms

P3:9 ms

Pa:0 ms

2416

Pa, Pr Ps Pz

AWT =

:

Pr+P2+P3+P4
4

3+16+9+0

irii$ iliie##*ffi

then

28

4

AWT :7 ms

.'. Average Waiting Time:7 ms

Now.

We need to calculate the average turnaround time.

Average Turnaround Time for

Pr :3 + 6:9 ms

Pz:16*8=24ms

Pl:9*7:l6ms
P+:0*3=3ms

Average Turnaround Time
Pr+Pz*Pr*Pe

4

9+24+16+3

52=v
ATT : 13 ms

Average Turnaround Time: 13 ms

Preemptive SJF algorithm

iP.Ls-"Ge*$' - rflvalrf;{$r Burstrtlm+i
Pr 0 8

Pz 1 4
Pg 2 o

Pa 3 5

Solution

If the processes arrive at the ready queue at the times shown and need the indicated burst times
the resulting preemptive SJF schedule is as depicted on the following Gantt Chart.

Gantt chart

Pr P P

Now,

Average Waiting Time for

Pr:10-t:9ms
Pz:1- 1 :0 ms

Pt= l7 - 2: 15 ms

P+:5-3:2ms
PlaPz+P:*P+

ATT:

-
4

g+0+ t5+2

AWT = 6.5 ms

.'. Average Waiting Time:6.5 ms

Now,

We need to calculate the Average Turnaround Time (ATT)

{.nrr _ AWT -r Burst Time
r\r r - No of processes

Pr:9+8=17ms

Pu :0 + 4:4 ms

Pr:15 *9=24ms

Pc:Z + 5:7 ms

P1*P2+P3+P4
.'. Average Waiting Time = -- 4

t7 +4+24+7
4

=13ms

.'. Average Turnaround Time: L3 ms

26
4

52:-
4

4.3 Priority Scheduling Algorithm

With this scheme, a priority is associated with each process and the
CPU is allocated to the process with the highest priority.

Equal priority process are scheduled in FCFS order. Priorities can be
defined either internally or externally.

lnternally, defined priorities may use time limits, memory requirements and the number of open files
etc. in computing priorities.

External priorities are set by criteria that are external to the operating system, such as the importance
of the process, the type and amount of funds being paid for computer use, and other often political
factors.

Priority scheduling can be either preemptive or non-preemptive.

A major problem with priority scheduling algorithms is indefinite blocking or starvation.

A process that is ready to run but lacking the CPU can be considered blocked, waiting for the CPU.

A solution to the problem of indefinite blockage of low priority processes is aging.

'Aging is a technique of gradually increasing the priority of processes that wait in the system

for long time'.

Examples

1. Non- preemptive priority scheduling algorithm

i;Fftl0*SlSirij:,rrEtlftit r.T.fmf, , l::. FrlGHfU'i
Pr 10
Pt 1 1 (hioh)

Pg 2 b
P 1 4
Ps b 2

Solution

Using priority scheduling, we would schedule these processes accordilg to the following Gantt chart

Gantt chart

The Average Waiting Time for

P1 =6ms

191816

Pz Ps Pr Ps p^

ffi$dddfijilCI1$i$$ji

P2:0 ms

P3: 16 ms

Pa: 18 ms

P5=1ms

f.iti:i

P1+P2+P3+P++Ps
Average Waiting Time =

5

6+0+16+18+1 4I
4

AWT :8.2 ms

.'. Average Waiting Time: 8.2 ms

Now,

.'. Average Turnaround Time for

Pr :6 * 10: 16 ms

P2:0*l =1ms
P:: 16 + 2: 18 ms

Pa:18+1:19ms
P5:1*5 :6ms

Pr+Pz+Ps*Pa*Ps
ATT :

5

16+l+18+19+6
5

60

5

ATT : 12 ms

.'. Average Turnaround Time: 12 ms

4,4 Round Robin Scheduling Algorithm

This algorithm is similar to FCFS scheduling, but preemptive is added to switch between processes.

A small unit of time, called a time quantum, or time slice is defined.

e*U.'$.r*buil

The ready queue is treated as a circular queue.

New processes are added to the tail ofthe ready queue.

The CPU scheduler picks the first process from the ready queue sets
a timer to intemrpt after one time quantum and dispatches the
process.

One of the two things will then happen

i. The process may have a CPU burst time of less than one time
quantum. In this case, the process itself will release the CPU
voluntarily.

The scheduler will then proceed to the next process in the ready queue.

ii. Otherwise, if the CPU burst of the currently running process is longer than one time quantum.
The timer will go off and will cause an intemrpt to the operating system.

A context switch will be executed and the process will be put at the tail of the ready queue.

The CPU scheduler will then select the next process in the ready queue.

The average waiting time under the Round Robin policy is often quite long. This algorithm is
preemptive algorithm.

Time Shot

In operating system time shot/time slice
Or "time quantum", "quantum" is the period of time for
which a process is allowed to run unintemrpted in a pre-emptive
multitasking operating system.

Examples

1. Preemptive for Round Robin (RR) algorithm

iip.{-.s,ffiFii
Pt 24

9z 3

Pg 3

Solution

Consider the above set of processes thal arrive at time 0 with
milliseconds.

If we use time quantum/time slice of 4 ms

i.e. time slice/quantum = 4 ms

the length of the CPU burst given in

iiitto.iiudiof r:to'$is;

Then process P1 gets the first 4 ms since it requires another 20 mq it is preempted after the first time
slice and the CPU is given to the next process in the queue process P2.

Process P2 does not need 4 ms, so it quits before time slice expires.

The CPU is then given to the next process P3. Once each process has received 1 time slice, the CPU
is returned to the process P1 for an additional time slice.

The resulting RR (Round Robin) schedule is as follows

Gantt Chart

Lets,

Calculate the average Waiting Time for

Pr:10-4:6ms
P2:4 ms

P::7 ms

Average Waiting Time:

6+4+7=- a
J

: 5.66 ms

Average Waiting Time:5.66 ms

Now, lets calculate the average turnaround time

Pr:6+24:30ms
Pz:4*3:7ms
Pz:7+3:10ms

ATT_30+7+10 _4711I I - a - .
JJ

: 15.6 ms

.'. Averase Turnaround Time = 15.6 ms

tll *o,., Time slice\Time quantum - It is the largest amount of CPU time any program can
consume when scheduled to execute on the CPU.

302622181410

17

J

Pr Pz P^ Pr Pr Pr Pr Pr

4,5 Multilevel Queues

Another class of scheduling algorithms has been created for

situations in which jobs are easily classified into different groups.

Example: common division is made between foreground

(Interactive) jobs and background (Batch) jobs.

A multilevel queue scheduling algorithm partitions the ready queue in separate queues. Jobs are

permanently assigned to one queue generally based on some property of the job like memory size or
job type, etc. each queue has its own scheduling algorithm.

In addition, there must be scheduling between the queues. This is commonly fixed priority
preemptive scheduling. For example: Foreground queue may have absolute priority over the

background queue.

For example: A multi-queue scheduling can have following queues:

i. System jobs

ii. Interactive programs

iii. Inter6ctive editins

iv. Batch jobs

v. Studentjobs

Each queue has absolute priority over lower priority queues. No job in the batch quete, for example,

can execute unless queues for the system jobs, interactive jobs, and interactive editing are empty
(figure 4.2).

Figure 4.2: Multi level queue scheduling

+lififdrltli4i

4.6 Multi Level Feedback eueues

Normally, in a multi queue scheduling algorithm, jobs are
permanently assigned to a queue upon entry to the system. Jobs do
not move between queues.

Multilevel feedback queue however, allow a job to move between
queues. The idea is that if a job uses too much of CpU time, it will
be moved to a lower priority queue.

Similarly a job which waits too long in a lower-priority queue it may be
moved to a higher priority queue.

For exarnple: consider a multilevel feedback queue scheduler with 3
queues, numbered from 0 to 2. The scheduler first executes all iobs in
queue 0.

A job entering the ready queue is put in queue 0. A job in queue 0 is given a time quantum of g
milliseconds' If it does not finish within this time, it is moved to the tai] of queue f . if queue 0 is
empty, the job at the head of queue 1 is given a quantum of 16 milliseconds. If it does not complete,
it is preempted and put into queue 2. Jobs in queues are executed FCFS only when, eueue 0 and 1
are empty ffigure 4.3).

Figure 4.3: Multilevel feedback queue

5. Operation System Examples

The scheduling algorithms (policies) used by the Solaris, Windows Xp. Window 2000 and Linux
operating system are

l' Solaris scheduling: Solaris uses priority based thread scheduling where each thread belongs
to one of the six classes

a. Time sharing (TS)

b. Interactive (IA)

c. Real time (RT)

d. System (Sys)

e. Far Systems Source (FSS)

f. Fixed Priority (FP)

Within each class there are different priorities and different scheduling algorithms.

The default scheduling class for a process is time sharing.

2. Windows XP schedulingMindows 2000 scheduling: Window XP schedules threads using a

priority based, preemptive scheduling algorithm.

The windows XP scheduler ensures that the highest priority thread will always run. The
portion of the windows XP Kernel that handles scheduling is called the dispatcher.

A thread selected to run by the dispatcher will run until it is preempted by a highcr priority
thread, until it terminates, until its time quantum ends, or until it calls a blocking system call,
such as for VO.

3. Linux scheduling: Linux scheduler provides two separate process scheduling algorithms.
They are

a. Time sharing algorithm for fair preemptive scheduling among multiple processes and

b. Other is designed for real time tasks where absolute priorities are more important than
fairness. Linux allows only process running in user mode to be preempted.

Solved Examples

1. Calculate Average
Waiting Time for
emptive Priority:

Solution
Given

Around Time and Average
of processes using Non-pre-

Turn
all set

' ffiiffi ifltririi LrP..i.lialtv;i

Pr 8 2 2

Pz 5 1 1(high)
Pg 4 0 3

Pa 3 3 4

iih"Gb$$:ttrifilrnsf iTknC.:
Pr 8 2 2
Pz 5 1 1(hioh)
D^ 4 0 ?

Pa 3 3 4

itllii,til$ir#tri$f

Gantt chart

0

Average waiting time

Pr -5
Pz =0
Pa = 13

Pa =17
3Sl4 = 8.75 m/sec

Average turn around time : Burst time + Waiting time
Pr= 8+5 = 13

Pz= 5+0 - 5
Pg= 4+13= 17

Pt= 3+17 = 20

5514 = 13.75 m/s

.'. Average turnaround time = 13.75 m/sec.

Solution

Step 1: Shortest jobs which will be executed are:

Step 2: Drawing Gantt chart

201713

2. Calculate Average Turn Around Time and Average
Waiting Time for all set of processes using SJF.

1410

Pz Pt Ps Pa,

lftF fi.i.lr,

Pr 1

Pg 2
Pz ?

Pr 4
Po 4

Ps Pg Pz Pt Pa

Step 3: Calculating Average turnaround time and Average waiting time.

Average waiting time
Pr =$
Pz =J
Ps =l
Pa =10
Ps =Q

2015 = 4 m/sec

Average waiting time:4 m/sec

Average turn around time: Waiting time + Burst time
Pr= 6+4= 10

Pz= 3+3= 6
Pg= 1+2= 3

Pa= 10+4= 11

Ps= 01+0= 01

3415 6.8 m/sec

.'. Average furnaround time:6.8 m/sec.

Calculate Average Turn Around Time and Average
Waiting Time for all set of processes using FCFS:

Process Burst time Arrival time
P1 5 1

P2 6 0
P3 2 2
P4 4 0

Solution
Given

Gantt chart by applying FCFS

0

Waiting Time: Pr : 10

Pz:0
P:: 15

P+:06

171510

Process Burst time Arrival time
Pr c 1

Pz 6 0

Pg 2 2

Pa 4 0

Pz Pr Pr Ps

Pr+Pz+P3+P4
Average Waiting Time: T =

l0+0+15+06 31=-4

Turn Around Time:

:7.75 units

Pr:15
Pz: 6

P:: 17

P+= 10

Average Turn Around Time

.'. ATT : 12,AWT = 7.75

15+6+17+10

Consider the following set of processes:

Process CPU Burst Time (in milliseconds)

Calculate the Average Waiting Time and Average Turnaround time by using Round
Robin CPU Scheduling Algorithm. (The time quantum is of 5 milliseconds)

Solution

Given

Process GPU Burst Time (in milliseconds)
P1 30
P26
P38

Round Robin CPU scheduling Algorithm with time quantum of 5 ms.

Let's, calculate AWT for

Pr : 0 + (15 - 5) + (24 -20) : l0 + 4= 14 ms

Pz= 5 + (20 - 10; : 5 + 10 : 15 ms

Ps : 10 + (21 - 15) : 16 + 6 : 16 ms

fi=r,
4'-

4.

Pr

Pz

Ps

30

6

I

442421201510

Pl+P2+P3 14+15+16.'.AWT=--:-
JJ

Calculate ATT

45:-:a
J

15 ms.

Pr Pz D^IJ Pr Pz D^IJ Pr

iiiiiltiri:iiii#tti$

AWT + Brust timeATT :

.'. Pr :
Pz:
Pr:

... ATT :

No. of processes

14 + 30: 44

L5 + 6:21
16 + 8:24
44+21+24 89...-=;

JJ

: 29.6ms.

Calculate Average Turnaround Time and Average
Waiting Time for algorithm using Non-preemptive SJF.

Process Burst Time Arrival Time
Pr80

4
I
5

Pz

Pg

1

2

3P+

Solution

Gantt chart

Average waiting time
Pt= I
Pz= 0

Ps= 17

Pa=. 4

30 14 = 75 m/sec

Arrange turnaround time : Arrange time - Burst time

P1 =$-$= 1

P2=Q-1,= 4
Ps = 17-9 - I
Pt=4-S= 1

14 14 = 3.5 m/sec

2617

Process Burst Time Arrival Time
Pr 8 0
Pt 4 4

Pg 9 2
Pn 3

Pz Pa, Pt D^

a

a

a

SUnaMARY
The main objective of multiprogramming is to have some process running at all times in order to
maximize CPU.
Short-term scheduler/CPU scheduler: Whenever the CPU becomes idle, the operating system must
select one of the processes in the ready queue to be executed. The part of the operating system which
carries out this selection process is called as short-term scheduler or CPU scheduler.
Non-preemptive scheduling: With non-preemptive case, once CPU is given to a particular process, it
will not release the CPU till to CPU burst time is over.
Preemptive scheduling: The strategy of allowing processes that are logically runnable to be temporarily
suspended is called preemptive scheduling and it is contrast to the run to completion method.
Dispatcher: The dispatcher is a module that gives control of the CPU to process selected by CPU
scheduler.
Dispatch latencing: The time it takes for the dispatcher to stop one process and start another running is
known as the dispatch latencing.
Throughput: The number of processes that are completed per time unit is called throughput and it
should be maximum.
Turnaround time: The interval from the time is submission of a process to the time of completion of a
process is called turnaround time and it should be minimum.
Waiting time: Waiting time is the period spent waiting in the ready queue it should be minimum.
Response time: lt is the time from the submission of a request until the first response is produced.
The CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to
be allocated to the CPU.
CPU uses many different CPU scheduling algorithms such as
a. FCFS
c. RR

b. SJFS
d. Priority based scheduling

e. Multilevel feedback queue f. Mullilevel queue
The examples of operating system when uses different CPU scheduling algorithms are
a. So/arls; lt uses priority based scheduling algorithm.
b. Windows XPtWindows 2000: lt uses priority based, preemptive scheduling algorithm.
c. Linux: lt uses two types of CPU scheduling algorithms

i. Time sharing algorithm for fair preemptive scheduling among multiple processes.
ii. Real time tasks where absolute priorities are more important than fairness.

Time quantum/ Time slice: lt is the largest amount of CPU time any program can consume when
scheduled to execute on the CPU.

WPU ouestions
1l.
2.
3.

tOct.2015 - 1Ml
lOct.2015 - lMl

t4pr.15.12- 1Ml

IAer.2015- 1M
IOct.14.Aor.13 - 2Ml

IOct.2014- 2Ml

4.
5.

6.

Define the term time shot.
What do you mean by pre-emptive scheduling?
Round Robin algorithm is non-preemptive comment and justify.

Define Burst Time.
Define the term Turn-Around Time.
Define Dispatch latency.

t#,

7. What is the function of Dispatcher?

8. What is meant by Throughput?

9. Define Waiting Time.
10. Define the term Dispatcher.

11. What do you mean by Waiting Time?

12. What do you mean by Turnaround Time?

1. Explain the working of priority scheduling.
2. Consider the following set of processes with the length of CPO

Burst time and arrival t iven in milliseconds:

tOct.2012- 2Ml

lOct.2012- 2Ml

IApr.2012 - 2Ml

lOct.2011- 2Ml

lOct.2011- 2Ml

IAor.2011 - 2Ml

lOct.2015 - 4Ml

lOct.2015- 4Ml

lApr2015 - 4Ml

lAor2015 - 4Ml

lOct.2014 - 4Ml

IOct.2014- 4Ml

lOct.2014- 4Ml

J,

4.

Calculate turn around time, waiting time, average waiting time
and average turn around time using FCFS algorithm.
Explain multilevel feedback queue algorithm.
Consider the following set of processes with the length of CPU
Burst time and arrival time.

Calculate Tum around time, waiting time, Average waiting
time and Average turn around time using Round Robin
Algorithm with time quantum:2.

5. List and explain scheduling criteria.
6. Calculate Turn Around Time, Average Turn Around time,

waiting time and average waiting time for all set of processes
using SJF (Shortest Job First).Non ive alsorithm.

Explain short term scheduler.

arcl me slven m ml

Pt 4
Pt 2 0
P: J
Pr 2
Pr 7 2

Pt I

Pz ? n

Pr 2 2
Pa 4 3
P" z 13

lAor.2013 - 4Ml 8. Calculate Average Turn Around Time and Average Waiting Time
for all set of

IApr.2013 - 4Ml

1Oct.12.11 - 4M1

tOct.2012- 4Ml

lAor.2012 - 4Ml

lAor.2012 - 4Ml

IOct.2011 - 4M1

lOct.2011- 4Ml

9.

10.

11.

12.

13.

What do you mean by Processor Share in case of Round-Robin
Scheduling?
Differentiate between the Preemptive and Non-preemptive
Scheduling.
Calculate Average Turn Around Time and Average Waiting Time
for all set of SJF.

Explain Multilevel Feedback Queue Scheduling Algorithm in
detail.
Calculate Average Turn Around Time and Average Waiting Time

Calculate the Average Waiting Time and Average Turnaround
time by using Round Robin CPU Scheduling Algorithm. (The
time quantum is of 5 milliseconds)

15. What is CPU Scheduler? State the criteria of CPU Scheduling
16. A disk drive has 540 cylinders numbered 0-539. The drive is

currently serving the request at cylinder 54. The queue is in
order:98,183, 47, 125, 10, 126,380, 200, Tg.Starting from the
current head position what is the total distance that the disk arm
moves to satisfy all the pgnding request for the following Disk
Scheduling Algorithm?

i. FCFS ii. SCAN
{i.

oim

for all set of ine FCFS
Process Burst time Arrival time

P1 c 1

P2 o 0
P3 2 2
P4 4 0

lOct.2011 - 4Ml 14. Consider the following set of processes:
Process CPU Burst Time (in milliseconds)

Pr
Pz

Po

30
o
8

eia4ren 5

PnocEss
SvrucHRorulzArroil

Introduction

A co-operating process is one that can affect or be affected by other processes executing in the
system. The co-operating processes may either directly share code and data or be allowed to share
data only through files or messages.

If more than one processes are allowed to access the same set of data concurrently, then the
execution of these concurrent processes might leave the data incorrect. Such a situation where
several processes access and manipulate the same data concurrently and the outcome of the
execution depends on the particular order in which the access takes place is called as a race
condition.

To guard against race condition, we must ensure that only one process at a time can be manipulating
the data which is commonly used.

For this, some kind of synchronization of the processes is required, such situations occur frequently
in operating systems as different parts of the system manipulate resources and we want that changes

should not interfere with one another.

iliit$lii#iffiqi ii.*iii

2. Interprocess Gommunication

Very often processes may need to communicate and may need to use a shared resource. This
resource can be a Software (S/W) resource such as a f;Je a global variable etc or can be a Hardware
(H/W) resource such as printer or tape drive.

Race Condition

Situations where two or more processes are reading or writing some shared data and the final result
depends on who runs precisely when, are called race condition.

To avoid race conditions, we have to find some way to prohibit more than one process from reading

and writing the shared data atthe same time we need mutual exclusion some way of making sure that

if one process is using a shared variable or file, the other process will be excluded from doing the

same thing.

The part of the program where the shared memory is accessed is called the critical section or
critical region.

To avoid race conditions following four conditions must hold

i. No two processes may be simultaneously inside their critical sections.

ii. No assumptions may be made about speeds or the number of CPU's.

iii. No process running outside its critical section may block other processes.

iv. No process should have to wait for over to enter its critical section.

3. Gritical Section Problem

Consider a system consisting of n cooperating processes

{Pr, Pz, P3, . . ., Pn}. Each process has a segment of code called the

critical section in which the process may be reading common

variables, updating a common table, writing a common file and so

on.

irirtiXiiir,iltrll

The important feature of the system is that when one process is executing in its critical section, no
other process is to be allowed to execute in its critical section. Thus the execution of critical sections
by the process is mutually exclusive in time. The critical section problem is to design a protocol
which the processes may use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The critical section may
be followed by an exit section and the remaining code is the remainder section.

A solution to the critical section problem must satisfy the fotlowing
requirements:

1. Mutual exclusion: If process Pi is executing in its critical
section then no other process can be executing in its critical
section.

2, Progress: Ifno process is executing in its critical section and
there exists some processes that wish to enter in the critical
section, then only those processes that are not executing in
their remainder section can participate in the decision as to
who will enter in the critical section next. and this section
cannot be postponed indefinitely.

3. Bounded waiting: There must exist a bound on the number of
times that other processes are allowed to enter their critical
sections, after a process has made a request to enter its critical
section and before that request is granted.

We shall try to find solution to the critical section problem that
satisfy these three requirements.

While constructing an algorithm a typical process pi is considered to be similar as shown in
figure 5,1.

do{

-

I Fntr\/ q6df i ^n I

critical- section,.
exit s'ection

remainder section;
while (1) ;

Figure 5.1 : General structure of a typical process pl

1

*RrtZO'# *'+lta',,,,.,'

iffi*
,,rbquire,ment m.us-tbe,...''
rs.atibfled bt iolutionito. '

'rlheeriticaf;sectioh?, .'

tntr.o.Ail6t1 to'

4. Semaphores

In 1965, E.W. D|kstra suggested using an integer variable to count

the number of wake ups saved for future use. In his proposal, a new

variable t1pe, called a semaphore was introduced.

A semaphore would have the value few indicating that no wake ups

were saved, or some positive value of one or more wake ups were

pending.

Checking the value changing it, and possibly going to sleep is all done as a single, indivisible atomic

action.

It is guaranteed that once a semaphore operation has started, no other process can access the

semaphore until the operation has completed or blocked. This atomicity is absolutely essential for
solving synchronization problems and avoiding race conditions.

Dijlcstra proposed having two operations

l. Down: This operation decrements the value of the semaphore addressed if it is greater than
zefo.

2. Up: This operation increments the value of the semaphore addressed.

A semaphore is a synchronization tool used to deal with the critical section on the mutual
exclusion problem.

In general, a semaphores is an integer variable apart from initialization can be accessed only
through two standard atomic operations P and V.

P is called as 'wait' and 'V' is called as 'signal'.

The definition of P and V is as follows:

wait (s) /P (s) :whif e s -< 0 do skip;
s: = s-1;

signal(s)/ V(s): s:= s+1;
Semaphore can be used in dealing with the n-process critical section problem. The n process

share a common semaphore 'mutex' initialized to l.
Each process P 1 is organized as follows:
7 6nat I! vvvs e

p (mutex) ;
critical section

v (mutex)
remainder sectlon

while false

Define semaphore; 'r

*prJi,t3,ra -',Pi'
wna{is $ernaptrorea

,.oct,1l,:*p* ++ * +u
Writg'ashort,note,on

ll.

$#rd

Types of Semaphore

,Pi,o *si$y*r#idtjiaffi

There are two types of semaphore

i. Counting semaphore: The semaphore described above is
known as 'Counting semaphore', since its integer value may
range over an unrestricted domain.

Binary semaphore: It is a semaphore with an integer value
that can range only between 0 and l. It can be simple to
implement than a counting semaphore.

4.1 Usage

Semaphores can be used to tackle the n process critical section problem. The n process share a
semaphore called 'mutex' which is initialized to 1. Each process pi is organized, as shown in
Jigure 5.2.

do{
f;,ffi;;!

criticaf section;

-U

I plvrrar \rllu LE

remainder section;
] while (1) ;

Figure 5.2: Mutual exclusion implemented with semaphores

Semaphores can also be used to solve various syrchronization problem s. For example: Consider two
concurrently running processes, p1 with a statement s1 and p2 with a statement s2. Suppose we require
that s2 be executed only after s1.

We can do this by letting pr and pz share a common semaphore 's1mch', which is initialized to 0 and
by inserting the statements.

sri
qi cna l /qrrnnh\\vJ tLvrtt t

Tn fho nr^^6ca n an-i fL^ ^f-F^-p1 ano tne sfafements
wait (synch) ;
q^.

In process p2, because synch is initialized to 0, p2 will execute s2 only after p1 has invoked signal
(synch) which is after s1.

4.2 lmplementation

The main disadvantage of above scheme is that they all require busy waiting i.e. while a process is in

critical section, any other process which tries to enter the critical section, must continuously loop in

its entry code. This wastes CPU's cycles, which otherwise could have been used by some other

process for some productive work.

To solve this problem, we must modify the definition of 'wait' and 'signal' semaphore operations.

When a process executes the wait operation, it must block itself. The block operation places the

process into a waiting queue associated with the semaphore. The process which is blocked, waiting

on a semaphore S should be restarted when some other process executes a 'signal'' operation. This is

done by a 'wake up' operation, which changes the process from the waiting state to the ready state.

The process is then placed in the ready queue. Such semaphores are also called as a 'spinlock'.

Here a semaphore is defined as:

typedef struct
i

int value;
struct process *L;

] semaphore;

Each semaphore has an integer value and a list of processes. When a process must wait on a

semaphore, it is added to the list of processes. A signal operation removes one process from the list and

awakens that process.

The 'wait' semaphore operation can now be defined as:

void wait (semaphore s)
{

s.value - -;
if (s.value (0)
{

add this process to S.L;
block () ;

]
]

A signal operation can be defined as:

void signal (semaphore s)
{

s.value ++;

if (s.vafue (=O)

{

remove a process p from s.L;
wakeup (p) ;

]

4.3 Deadlock and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where two or
more processes are waiting indefinitely for an event that can be caused only by one of the waiting
process. Here we say that the processes are deadlocked.

For example; Consider two processes ps and p1 which are executing simultaneously and using the

semaphores S and Q, set to value 1 if the statements in pe and pr are executed in the following
sequence:

Po Pr
Wait (S)

Wait (e)
Wait (Q)

i Wait (S)
:

Signal(S)
Signal(Q)

Signal(S)
Signal(Q)

Here pe executes wait (S) then p1 executes wait (Q), now when pe tries to execute wait (Q), it must

wait until pr executes signal (Q). Similarly, when py executes wait (S), it must wait until p0 executes

signal (S). Thus each process is waiting for the other to proceed and they are deadlocked.

Another problem related to deadlock is indefinite blocking a saturation or starvation, where a process

waits indefinitely within a semaphore.

4.4 Blnary Semaphore!

The semaphore described above is known as counting semaphore, since its integer value may range

over &n unrestricted domain. A binary semaphore is a semaphore with en integer value that can r&nge

only between 0 and 1. A binary semaphore can be simple to implement than a counting semaphore.
We now show, how a counting semaphore can be implemented using a binary semaphore.

Let S be a counting semaphore. To implement it in terms of binary semaphores, we need the
following data structure:

Rl n:rrr <omrn1-rnrr J 51r52i

1nt c:

Initially Sl = 1, s2 : 0 and value of c is set to the initial value of counting semaphore S.

The wait operation on the counting semaphore s can be implemented as follows:

wait (s1) ;
c--;
1f (c<o) { signal (s1) ;

wait (s2) ;
]
signa] (sr) ;

The signal operation on the counting semaphore S can be implemented as follows:

wait (s1) ;

c++,.
if (c<=o)

signal (sz) ;

el se
signal (sr);

5. Monitors

To make it easier to write correct programs, Hoare (1974) and Brinch Hansen (1975) proposed a
higher level synchronization primitive called a Monitor.

A monitor is a collection of procedures, variables and data structures that are all grouped together in
a spiral kind of module or package.

Processes may call the procedures in a monitor whenever they want to, but they cannot directly
access the monitors internal data structures from procedures declared outside the monitor.

illliiitil'it ri:

Monitors have an important property that makes them useful for achieving mutual exclusion only
one process can be active in a monitor at any instant. typically, when a process calls a monitor
procedure the first few instructions of the procedure will check to see of any other process is
currently active within the monitor.

If so, the calling process will be suspended until the other process has left.the monitor.

If no other process is using the monitor, the calling process may enter.

Glassical Problems of Synchron zation

In this section, a couple of different synchronization

concurency control problems are presented.

problems as an example for a large class of

6.{ The Bounded Buffer Problem

We have a producer process and a consumer process. The producer process produces information

that is consumed by a consumer process. The bounded buffer producer consumer problem assumes a

fixed buffer size. In this case, the consumer must wait if the buffer is empty and the producer must

wait if the buffer is full.

Here, we assume that the pool consists of n buffers, each capable of holding one item. The mutex

semaphore provides mutual exclusion for accesses to the buffer pool is initialized to the value 1. The

'empty' and 'full' semaphore count the number of empty and full buffers respectively.

The semaphore 'empty' is initialized to the value n, the semaphore 'full' is initialized to the value 0.

The code for the producer process is as below:

nrodrrcc an i tem i n npvj- n]rv,: L y

wait (empty) ;
wait (mutex) ;

do
i

iffi
a.l.J nex1. n f.o buf f er

cian:l lmrriov\
\ ILLg 9v.\ /

'signal- (ful1) ;

] while (1);

The code for the consumer process is as shown below:

do
{

walt (ful1) ;
wait (mutex) ;

remove an item from

ci nnr'l lmrrl- ov\ .
v+vrlqr \rrrsevrt/,

<innaI lamntrr'\.
\vrLLyeJ / ,

consume the item in

] while (1);

liiliitliti

full buffers for the consumer or as the

buffer to next

next c

We can interpret this code as the producer producing

consumer producing empty buffers for the producef.

6.2 Readers and Writers Problem

An object (for example.' a flle or record) is to be shared among several concurent processes. Some

processes want to only read the data object such processes are called reader process. Some other
processes may want to update the shared object. Such processes are called writers. If more than one

reader processes access the object simultaneously then there is no problem. But if two writer process

want to access the object simultaneously then it might result in a problem. To ensure that these

difficulties do not arise, we require that the wrjters have exclusive access to the shared object,

This problem is refened to as 'Readers Writers' problem.

A variation in the readcrs writors problem ie the first readerc.wdtcrs problem, it requires that no

readers will be kept waiting unleos a writer has already obtainod permission to use the shared object.

In other words, no reeder should wait for other readers to finish simply becauss a writer is waiting,

rtliit+lii,fri

In the solution to the first readers writers problem, the reader process share the following data

structures

semaphore mutex, wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0. The semaphore wrt
is common to both the reader and writer processes. The mutex semaphore is used to ensure mutual
exclusion when variable readcount is updated, it keeps track of how many processes are currently
reading the object.

The semaphore wrt fi.rnctions as a mutual exclusion semaphore for the writers. It is used by 1" or last
reader that enters or exits its critical section. [t is not used bv readers who enter or exits while other
readers are in their critical sections.

The codefor a writer process is as below:

wait (mutex) ;

readcount ++;

if (readcount == 1)

wait (wrt) ;

qianr'l i/mrrfav\.v+Y.lsr \r'ruvv::/ ,

reading is performed

wait (mutex) ;

readcount --;
if(readcount == 0)

^i^-^l /-,-r\bilgrrdr \wr L/ ;

ci nn: l lmrriav\ .

Here if writer is in critical section and n readers are waiting, then one reader is queued on wrt,

and n - 1 readers are queued on mutex. When a writer executes signal (wrt), we may resume

execution of the waiting readers or a single waiting writer.

ffi f{ir}il,ffiffi

6.3 Dining Philosophers Problem

There are five philosophers who spend their life in thinking and
eating. They share a common circular table and 5 chairs, each
belonging to one philosopher. In the centre of the table there is a
bowl of rice and the table is laid with 5 single chopsticks
(/igure 5.3). When a philosopher thinks, she does not interact with
her colleagues, from time to time a philosopher gets hungry and
picks up 2 chopsticks that are closer to her. A philosopher may pick
up only one chopstick at a time.

both the chopsticks, she eats without releasing her chopsticks. When she

finishes eating, she puts down both the chopsticks and starts thinking.

One simple solution is to represent each chopstick by a semaphore. A philosopher tries to grab the

chopstick, executing a wait operation on'that semaphore, she releases her chopsticks by executing
the signal operation on the appropriate semaphore. Thus the shared data are

semaphore chopstick [5] ;

where all the elements of chopstick are initialized to 1. The structure of philosopher i is as shown
below:

do
{

wait (chopstick{i}) ;
wait (chopstick [(i+1) ?5]) ;

=
eat;

signal (chopstick Ii]) ;

signal (chopstick [(i+r) %s]) ;

=
think:

] while (t);

Although it guarantees that no two neighbours are eating simultaneously. It must be rejected
because it has a possibility of creating a deadlock. Suppose that all five philosophers became hungry
and grab 1 chopstick each. To ensure that there is no deadlock. We must

i. Allow at most four philosophers to be sitting simultaneously at the table.

ii. Allow a philosopher to pick up her chopstick only if both chopsticks are available.

OR

Use an asymmetric solution i.e. an odd philosopher picks up first her left chopstick and then
her right chopstick, an even philosopher pick up her right chopstick and then her left
chopstick.

Figure 5.3: The situation of the dinning - philosopher

;@ d

SUnaMARY
r Race conditions: Situations where two or more processes are reading or writing some shared data and

the final result depends on who runs precisely when, are called race conditions.

r Critical section/ region: The part of the program where the shared memory is accessed is called the

critical region or critical section.

r ,A semaphore is a synchronization tool used to deal with the critical section on the mutual exclusion

problem.

o To make it easier to write correct program Moare and Brench Husen proposed a higher level

synchronization primitive called a monitor.

o Monitor: A monitor is a collection of procedures variables and data structures that are all grouped

together in a spiral kind of module or package.

o The classic problems of synchronization can be solved using the following techniques

a. Bounded buffer problem
b. Readers writers problem
c. Dining philosophers problem

. Binary semaphore: A binary semaphore is a semaphore with an integer value that can range only

between 0 and 1.

PU |luestions

IOct.2015 - 2Ml

lApr.15.13.12- 2Ml

lOct.2012 - 2Ml

IOct.2015 - 4hrll

tOct.2015 - 4Ml

IApr.2015 - 4Ml

lOct.2014 - 4Ml

lApr.2013 - 4Ml

IOct.2012- 4Ml

IOct.l2.'l'l - 4\tfl

IApr.2012- 4Ml

lOct.11,Apr.11 - 4Ml

tApr.20'11 - 4Ml

1l.

2.

3.

1. Explain the critical section problem in detail.

2. Explain in detail Dining-Philosopher Problem.

3. Explain the Reader's writer's problem which is a classic
problem of synchronization.

4. Define semaphores. List its types. Explain any one in detail.
5. What is Critical Section Problem? Explain the following term

in the context of it:

i. Mutual Exclusion
ii. Progress

iii. Bounded Wait
6. What is Semaphore? List

Semaphores.

and explain different types of the

7. Describe in detail the "Dining Philosopher Problem"
Synchronization Problem.

8. What is Critical Section Problem? Which requirement must be
satisfied by solution to the Critical Section?

9. Write a short note on Semaphores.

10. Explain bounded buffer problem in detail with the help of
suitable example.

Define semaphore.

What is Semaphore?

Define the term Critical Section.

(],

ursl0ll

&aQrerr 6

IDcADLoCKS

1. Introduction

In a multiprogramming environment several processes may compete for a finite number of resources.

A process requests resources if the resources are not available at that time, the process enters a
waiting state. It may happen that waiting processes will never again change state, because the

resources they have requested are held by other waiting processes. This unfortunate situation is
called a deadlock.

Deadlock can be definedformally asfollows:

'A set of processes is deadlocked if each process in the set is waiting

for an event that only other process in the set can cantse' .

in$"dffi b.srb. .iiffi ;i:;':l:iil;1i*;:

2. System Model

A system consists of a finite number of resources to be dishibuted among a number of competing
processes. The resources are partitioned into several types, each of which consists of some number
of identical instances.

{Jnder the normal mode of operation, a process may utilize a resource in only of the fotlowing
sequencei

1. Request: If the request cannot be granted immediately.

For example, if the resource is a printer, the process can acquire the resource.

2. Use: Theprocess can operate on the resource.

For example, if the resource is a printer, the process can be print on the printer.

3. Release: The process releases the resources.

A process must request a resource before using it and release the resource after using it. A process

may request as many resources as required to carry out the designated task.

A set of process is in a deadlock state, when every process in the set is waiting for an event that can

onlv be caused bv another in the set.

3. Deadlock Gharacterization

A deadlock situation can arise if and only if the following conditions hold simultaneously in a
system.

3.{ Necessary Conditions for Deadlock

Coffman (1971\ showed that four conditions must hold for there to be a deadlock.

1. Mutual exclusion: At least one resource is held in a non-sharable mode. that is onlv one
process at a time can use the resource.

2. Hold and wait: There must exist a process that is holding
atleast one resource and is waiting to acquire additional
resources that are currently being held by another process.

3. No preemption: Resources cannot be preempted,
i.e., resource can only be released voluntarily by the person
holding it, after the process has completed its task.

4. Circular wait: There exists a set (p6, pl, ., p,) of waiting processes such that p6 is held by
Pr. Pn - 1 is waiting for resources which are held by p,, and pn is waiting for a resource held
by ps. Thus, there must be a circular chain of two or more processes, each of which is waiting
for a resource held bv the next number of the chain.

All of these conditions must be present for a deadlock to occur.
is possible.

Ifone ofthem is absent, no deadlock

4.

i.

ii.

iii.

3

WritEastrortrd{o'oo''. "
re$ource alh€AtioD:,' .

,

.gqFh, .' '.. ,r , ' , .

,fnr,e!t!*+M , ,,,r,
'ExplafntResoutee'"',. l

4llochtfon gtaph,ln detai{"'..

,Oct^lff.l -.4M;::,' '

ebiam,mi Resouiei ' ..'-
:Allocation Giaph Wi$r:,,,,,

QaI",:01i,5t*.4M", ,:l

.quita,ble Axamflei:,'.

lll.

It consists of the sets P, R and E

Resource instances

Process states

V is partitioned into two types:

i. P: {Pr, P2,....., Pn}, the set consisting of all the processes in the system.

ii. R : {Rt, &,, &}, the set consisting of all the resources types in the system.

Request edge: A request edge P1 -+ Ri in the resource
allocation graph indicates that process P; ma/ request resource

\ at some time in the future. A request edge is represented by
a dashed line.

Figure 6.1

Assignment edge: directed edge \ -+ P11V.

Resource Allocation Graphs

iliffi {l Hi#,1ffi*i#iiiii$$li

A set ofvertices V and a set ofedges E.

Process for drawing Resource Graph: Resource type with 4 instances Pl reQuests instance of \.
Pl is holding an instance of \

P1

Pi

Rj

&

Examples,

i. Example of a resource allocation graph

Figure 6.2

ll. Resource allocation graph with a deadlock

Figure 6.3

Basic Facts

i. Ifgraph contains no cycles -+ no deadlock

ii. Ifa graph contains a cycle -+ deadlock

iii. Ifonly one instanceperresource type, then deadlock

iv. [fseveral instances per resource type, possibility ofdeadlock

tirli.# l. :.$[eaio

5. Safe State

A state is safe if the system can allocate resources to each process

(up to its maximum) in some order and still avoid deadlock.

Formally, we can say, a system is in a safe state only if there exist a safe sequence.

A sequence ofprocesses (Pr, P2,.....,Pn) is a safe sequence for the current allocation state, iffor each

P1, the resources that Pi can still request can be satisfied by the currently available resources and the

resources held by all the P1, with j < i.

6. Deadlock Prevention

In general, four strategies are usedfor dealing with deadlocks

i. Just ignore the problem all together.

ii. Deadlock detection and recovery.

iii. Dynamic avoidance by careful resource allocation.

iv. Deadlock prevention, by structurally negating one of the four necessary conditions.

6.{ Just lgnore the Problem all together

Ostrich Algorithm

This is the simplest algorithm. The idea is as follows:

Stick your head in the sand and pretend there is no problem at all.

(For example,Unix opereting system uses this algorithm)

:l,ili,it;;,.1;,'...1

$ififfi

6,2 Deadlock Detection

In this technique, the system does not attempt to prevent deadlocks
from occurring, instead it lets them occur, tries to detect when this
happens, and then takes some action to recover after the fact.

Deadlock Detection with one resource of each type

Resource graph,In this case, we assume that system might have only one resource of each type.

For such system, we can construct a resource graph. If the graph contains one or more cycles, a

deadlock exists. Any process that is part ofthe cycle is deadlocked. Ifno cycles exist, the system is
not deadlocked.

Consider the system with seven processes. A through G and six resources, R through W.

Resource ownership is as follows:

i. Process A holds R and wants S

ii. Process B wants T

iii. Process C wants S

iv. Process D holds U and wants S and T

v. Process E holds T and wants V
vi. Process F holds W and wants S

vii. Process G holds V and wants U.

Figure 6.4: Resource graph

After detecting a deadlock some way is needed to recover and get the system going again.

)

6.3 Recovery from Deadlock

1. Recovery through preemption: In some cases it may be
possible to temporarily take some resource away from a
process and give it to another process.

In many cases, manual intervention may be required. The ability to take a resource away from
a. process, have another process use it, and then give it back without the process noticing is
highly dependent on the nature of the resource. Recovering this way is frequently difficult or
impossible.

Recovery through rollback: System designers can arrange to have processes check pointed
periodically. Check pointing a process means that its state is written to a file, so that it can be
restarted later, along with the resource state, that is which processes are currently assigned to
the process.

When a deadlock is detected, it is easy to see which resources are needed. To do the recovery,
a process that runs a needed resource is rolled back to a point in time before it acquired some
other resource by starting one of its earlier check points. In effect, the process is reset to an
earlier moment when it did not have the resource. which is now assisned to one of the
deadlocked processes.

If the restarted process tries to acquire the resource again, it will have to wait until it becomes
available.

Recovery through killing processes: The crudest, but simplest way to break a deadlock is to
kill one or more processes. One possibility is to kill a process in the cycle with a little luck, the
other processes will be able to continue. If this does not help, it can be repeated until the cycle
is broken.

3.

6.4 Deadlock Prevention

If we can ensure that at least one of the four necessary conditions for
deadlock is never satisfied, then deadlocks will be structurally
impossible.
l. Attacking the mutual exclusion condition: If no resource

was ever assigned exclusively to a single process, we would
never have a deadlock.

By spooling printer output, we can eliminate deadlock for the
cannot be applicable for some other resources.

3
94f114-4il1 . :,,

Explain deadlock : I

preventien stlate-glesl

oct.eorz ,'4M ,
-,'l

expfain Deadiock'
,

Fr-eygntion ih detaif ,',

Apr.10-f2 -4lvl .,,

Wh?! ib DeadlOck'ir':.:-: i: .

P,revention?,Elplain, " -

,.&adhckPreygfilion ..: f ' : :

S.tra
,

printer. Unfortunately, this

) Attacking the hold and wait condition: One way to achieve this goal is to require all
processes to request all their resources before starting execution. Ifeverything is available, the

process will be allocated whatever it needs and can run to completion. If one or more
resources are busy, nothing will be allocated and the process would just wait.

An immediate problem with this approach is that many processes do not know how many
resources there will be until they have started running.

Another problem is that resources may not be used optimally.

Some main frame batch systems require the user to list all the resources on the first line of
eachjob.

The system then acquires all resources immediately, and keeps them until the job finishes

while this method puts a burden on the progmmmer and wastes resources, it does prevent
deadlocks.

A slightly different way is to require a process requesting a resource to first temporarily
release all the resources it currently holds and then it tries it get everything it needs all at once.

Attacking the no-preemption condition: Attacking this condition is not feasible.

Attacking the circular wait condition: One way is simply to have a rule saying that a
process is entitled only to a single resource at any moment if it needs a second resource, it
must release the first resource. Another way is to provide a global numbering of all the

resources.

Now the rule is, 'Processes can request resources whenever they want to, but all requests must

be made in numerical order'.

With this rule, the resource allocation graph can never have cycles. A minor variation is to
drop the requirement that resources be acquired in strictly increasing sequence and merely
insist that no process should request a resource lower than what it is already holding.

6.5 Deadlock Avoidance By Gareful Allocation of
Resource

The main algorithm for deadlock avoidance are based on the concept of'safe states'. A state is said

to be safe if it is not deadlocked and there is a way to satisff all requests cunently pending by running
the processes in same order.

An unsafe state is not a deadlocked state because the system can run for a while, lnfact, one process

can even oomplete. The difference between a safe stste and on unsefe statc is that from a safe state

the system can guarantee that all processes will finish, whereas from an unsafe state, no such

guarantee con be given.

3.

4,

iiiti,# 4i$*i#:lo$iti

7. Bankerts Algorithm For a Single Resource

A scheduling algorithm that can avoid deadlocks is due to Dijkstra (1965) and is known as the

Banker's Algorithm.

The Bankers algorithm is thus to consider each request as it occurs and see ifgranted to a safe state.

If it does, the request is granted otherwise, it is postponed until later.

8. Bankerts Algorithm for Multiple Resources

The algorithm for checking to see if a state is safe can now be stated as follows

1. Look for a row R, whose unmet resource needs are all smaller than or equal to A. If no such

row exists, the system will eventually deadlock since no process can run to completion.

2. Assume the process of the row chosen requests all the resources it needs (which is guaranteed

to be possible) and finishes. Mark that process as terminated and add all its resources to the A
vector.

3. Repeat steps 1 and 2 until either all processes are marked terminated, in which case the ended

state was safe, or until a deadlock occurs, in which case it was not.

The above algorithm uses three vectors E, P and A to denote existing, possessed and available

respectively.

Although in theory the algorithm is wonderful, in practice it is essentially useless because processes

rarely know in advance what their maximum resource needs will be. In addition, the number of
processes is not fixed, but dynamically varying as new users login and logout. Furthermore,

resources that were thoueht to be available can suddenly vanish.

9. Process Termination

ln order to avoid deadlock by killing a process two methods can be used

1. KilI all deadlocked process: This type will surely break the deadlock but at a great expense,

some of the processes may have computed for a long period of time and will have to be started

again.

) KiIl one process at a time until the deadlock cycle is eliminated: In this method, it requires
considerable overhead, since after each process is killed a deadlock detection alsorithm must
be invoked to determine if any process is still deadlocked.

Even when we decide to kill some process, which process should be chosen, can be decided
using one of the following criteria.

Priority of the process

How many processes will be involved in rollback?
Resources the process needs in order to complete.
How many and what type of resources the process has used?
How long the process has computed and how much longer the process will compute?

{ O. Resource Preemption

In order, to eliminate deadlocks by using resource preemption, we
successively preempt some resources from process and give these
resources to other process until the deadlock cycle is broken.

Following issues need to be addressed

1. selecting a victim: which resources and which processes are
to be preempted? We must determine the order of preemption
in order to minimize the lost.

2. RolI back: If we preempt a resource from a process what
should be done with that process? It cannot continue with its
normal execution if it is missing some needed resource.

We must rollback the process to some safe state and restart it from that state. The simplest
solution is a total rollback, about the process and restart it. However, it is more effective to
rollback the process only, as far as necessary to break the deadlock. This method however
requires the system io keep more information about the state of all the running processes.

Starvation: How do we ensure that starvation will not occur? i.e. how can we zuarantee that
resources will not always be preempted from same process.

3.

Solved Examples
1. Consider the 'ollowing snapshot of a s

Process Allocation Max Available
ABC ABC ABC

Po 232 975 ?32
Pr 400 522
Pz 504 1104
Pe 433 444
Pl 224 655

Answer the following questions using Banker's Algorithm:
i. \ilhat is the content of Need Matrix?
ii. Is the system in a Safe State? Ifyes, give the safe sequence.

Solution

Given:

il s.i il ii:iltfltli

ABC ABC ABC
Po 232 975 332
Pr 400 522
Pz 504 1104
Ps 433 444
Pt 224 655

Given 5 processes

P: {Po, Pr, Pz, Pl, P+}

Resources type = {A, B, C}

Allocation matrix and max as follows:

r+ .sl i* ffii*
ABC ABC

Po 233 975
Pt 400 522
Pz 504 1104
Pa 433 444
Pt 224 655

Total instances ofeach resource type is given {3, 14,72}

.'. Available resources : Total instance - Allocation

: {3,74,12} - {3,3,2\
Available: {0, 11, 10}

ll.

Need matrix
Need[i][i] : Max[i] [] - Allocation

a. Initialize 'Finish' : (F) for all processes

.'. finish []: {F, F, F}
b. Work: available : {0, 11, 10}

fori:0
If(finish i) = false &&(needi < work)

finish : F &&(6, 4, 3 < 0,1 1,10)
: false

{P6 cannot be granted}

.'. the system is not in a safe state.

2. Consider the system with 5 process P = {Po, PrPz, Pr, Pr}
and four resources type {A, B, C, D}. There are 3 instances
of type A, 10 instances of type B, 15 instances of type C
and 7 instances of type D.

The allocation and Maximum demand matrix are as follows:

Answer the following question using Bankers Algorithm:
i. Is the system in a Safe State?
ii. If a request from process Pa arrives for (0, 2, 0,2) can it be granted.

Solution

Step 1: Total instances ofeach resource type is given {3, 10, lS,7}

.'. Available resources : Total instance - Allocation
= {3,10, 15,7} - {2,5,13,6}: {1,5,2, 1}

I

A B c
Po 6 4 3
Pr 1 2 2
Pz 6 0 0
Pg 0 1 1

Pa, 4 3 1

Allocatlon
A B c D

Po 0 1 2 I

Pr 0 I
I 2 'l

Pt 1 0 0 0
Pr 1 3 5 3
Pt 0 0 4 I

MAX
A B c D

Po 0 I 4 4
Pr 0 o 5 2
Pz 1 6 4 1

Pe 2 3 7 c
Pe 0 5 6 7

A B c D

Po 0 7 2 3

Pr 0 b 3 1

Pz 0 6 4 1

Ps 4
I 0 2 2

Pr 0 5 1 6

Step 2: To check safe state

Calculate Need [i] fil : Max tiltjl - Allocation [i][]

= Need

Step 3: Initialise'Finish' : (F) for all processes

.'. finish [] : {F, F, F, F, F}

Step 4: Work = available : {1 , 5, 2, Ll

a. For i:0
If (Finish [i] = False && needi < work)

Finish: F && (0,7,2,3 < 1, 5, 2, 1) : True.

.'. Ps can be granted.

Releasing resources by Po, work will update to

Work: Work + Allocation

.'. Work: {1, 5, 2,l) + {0, 1,2,I)
Work: {1,6,4,2\

Finish [0]: True

Safe Sequence: {Ps}

b. i= 1

If Finishi: F && need < Work

:F && {0, 5, 3, I < I,6, 4,2}
: True.

.'. P1 is granted

Work: Work + Allocationr

= {7,6,4,2} + {0, 1,2, l}
Work= {1,7,6,31
Finish []= True

Safe Sequence: {Ps, P1}

I

i:2
If Finish2: F && need2 < Work

. Finish2:F&& {0,6,4,1 <1,7,6, 3} :True.

.'. P2 is granted.

Work: Work + Allocation2
: {I,J,6,3,} + {1, 0, 0, 0}
: {2,7,6,3}

Finish [2] : True

Safe Sequence: {Pe, Pr, Pz}

i:3
If Finish3: F && (need < Work)

Finish3: F && {1,0,2,2 <2,7,6, 3} +True.
.'. P3 is granted.

Work: Work + Allocation3
: {2,7,6,3} + {1, 3, 5, 3}
: {3, 10, 1 1, 6}

Finish [3] : True

Safe Sequence: {Ps, P1, P2, P3}

i:4
If Finisha: F && (need < Work)

=F&&{0,5, 1,6<3, 10, 11,6}
: True.

.'. Pa is granted

.'. Work: Work + Allocation
: {3, 10, 11,6} + {0,0,4, 1}

Work = {3, 10, 15, 7}

Finish [4]: True

Safe Sequence: {Ps, Pr,Pz, Pr, P+}

We can conclude that the system is in safe state.

If a request from process Pa arrives for (0, zr 0r 2) can the request be granted.
We check

d.

Reques! < Needl

(0,2,0,2) < (0,5, l, 6)

= False

That means process Pa reeuest is not legal. It is asking for more resources it should
demand for. So process P+ with new request will not be granted.

3. Consider the system with 5 process P = {Po, PrPz, Ps, Pr}
and four resources type {A, B, C, D}. There are 3 instances
of type A, 14 instances of type B, 12 instances of type C
and 12 instance of type D.

The allocation and Maximum demand matrix are as follows:

Answer the following question using Bankers Algorithm:
i. Is the system in a Safe State?
ii. If a request from process Pa arrives for (0, 0,

immediately granted.

Solution

Given: 5 Process

P = {Po, Pr, Pz, P:, P+}

Resources of type {A, B, C, D}

Allocation Matrix and Max as follows:

Is system in safe state.

> Total instances ofeach resource type is given {3, 14, L2, l2l

4, 1) can be the request be

Allocation
A B G D

Po 0 6 3 2

Pr 0 0 1 2

Pz 1 0 0 0

Po 1 3 5 4
Pl 0 0 1 4

Max
A B c D

Po 0 6 5 2

Pr 0 0 1 2

Pz 1 7 5 0

Pe 2 3 5 6

Pl 0 6 5 6

Allocation
A B c D

Po 0 o 3 2

Pt 0 0 ,| 2

Pz 1 0 0 0

Pg 1 3 5 4

Pt 0 0 1 4

Max
A B c D

Po 0 o 5 2

Pr 0 0 1
I 2

Pz 1 7 b 0

Pg 2 3 E o

Pe 0 6 5 6

,iii'!.liiiiii;rffi
.'. Available resources : Total instance - Allocation

: {3, 14, 12, 12} - {2,9, 10,12}
: {I,5,2,0}

To check the safe state.

Calculate Need [i] [] : Max tilLjl - Allocation [i][]
+ Need

lnitialise 'Finish' : (F) for all processes

.'. finish [] : {F, F, F, F, F}
Work: available: {1, 5,2, 0}
a. Fori=0

If (Finish [i] : False && need; < wor$
.'. Finish : F&&(0,0,2,0<1,5,2,0) = True

.'. P6 can be granted.

Releasing resources by Po, work will update to

Work: Work + Allocationo

.'. Work : {1,5,2,0} + {0, 6,3,2} : {1, 1I,5,2)
Finish [0] : True

Safe Sequence : {Po}
b. i:1

If Finisfu : F && need; < Work

Finishi F && {0, 0, 0, 0} < {1, 1.1,5,2\ is True.

.'. Pr is granted

Work : Work+ Allocationr
: {1, 11, 5,2} + {0,0, 1, 2): {1,I1,6,4}

Finish [1] : True

Safe Sequence : {Po, Pr}

c. i:2
If Finish2 : F&&need2<Work

Finish2 : F && {0,7, 5,0} < { 1, I1,6, 4} -> True.

A B c D
Po 0 0 2 0
Pr 0 0 0 0
Pc 0 7 c 0
Pa I 0 0 2
Pa 0 6 4 2

tntro$Eotiofl:rtb
'L,...j

q,,.f .iiLl;;r"-

.'. P2 is granted.

Work: Work + Allocation2
: {1, 11,6,4,} + {1,0,0,0} : {2,11,6,4}

Finish2 : {T}
Safe Sequence : {Po, Pr, P2}

d. i:3
If Finish: : F && need3 < Work

Finish3 : F && { 1, 0, 0, 2) < {2, 11,6, 4} -+True.

.'. P3 is granted.

Work: Work + Allocation3

{2,11,6,4} + {1, 3, 5, 4) : {3,14, 1 1, 8}

Finishpl {T}
Safe Sequence : {Po, Pr, Pz, P:}

e. i:4
If Finistra : F && needo < Work

Finish+ = F && {0,6, 4,21 < {3, 14, ll,8} -+ True.

.'. P+ is granted

Work= Work+Allocatioru

{3,14,1 1, 8} + {0, 0, 1, 4) : {3,14,12, 12}

Finishl+1 {T}
Safe Sequence {Po, P', P2, P3, P4}

So Finish [] = {T, T, T, T, T}
And Safe Sequence is {Pe, Pr,Pz, P:, Po}

We can conclude that the system is in safe state.

If a request from process Pa arrives for (0, 0, 4, l) can the request be immediately
granted.

Check
Reques! < Needi
(0, 0,4, 1) < (0, 6,4,2) -+ False
That means process Pa reQuest is not legal. It is asking for more resources it should demand
for. So process P+ with new request will not be granted.

i{iitii{iiiiiitit

SUMMARY
A set of processes is deadlocked if each process in the set is waiting for an event that only other process
in the set can cause.
There are four necessary conditions for deadlock:
a. Mutual exclusion condition
c. No preemption condition

a. Mutual exclusion condition
c. No preemption condition

b. Hold and wait condition
d. Circular wait condition

b. Hold and wait condition
d. Circular wait condition

The strategies used for dealing with the deadlock:
a. Just ignore the problem together
b. Deadlock detection and recovery
c. Dynamic avoidance by careful resource allocation
d. Deadlock prevention by structurally negating one of the four necessary conditions
A state is said to be safe if it is not deadlocked and there is a way to satisfy all requests currently
pending by running the process in same order.
To eliminate deadlocks by using resource preemption, we successively preempt some resources from
process and give these resources to other process until the deadlock cycle is broken. Following issues
need to be addressed:
a. Selecting a victim
A set of processes is deadlocked if each process in the set is waiting for an event that only other process
in the set can cause.
There are four necessary conditions for deadlock:

The strategies used for dealing with the deadlock:
a. Just ignore the problem together
b. Deadlock detection and recovery
c. Dynamic avoidance by careful resource allocation
d. Deadlock prevention by structurally negating one of the four necessary conditions
A state is said to be safe if it is not deadlocked and there is a way to satisfy all requests currently
pending by running the process in same order.
To eliminate deadlocks by using resource preemption, we successively preempt some resources from
process and give these resources to other process until the deadlock cycle is broken. Following issues
need to be addressed:
a. Selecting a victim b. Rollback c. Starvation.

WPUouestions
IOct.l5. Apr.l5 - 2Ml

IOct.2014- 2Ml

tApr.2013 - 2Ml

IOct.2012- 2Ml

tApr.2012 - 2Ml

IOct.2011 - 2Ml

What is Deadlock?
Define claim edge in Resource Allocation graph.
Define Safe Sequence.
What do you mean by Request Edge?

Define Rollback.

What is meant by Deadlock?

Write a short note on resource allocation graph.I.
2.

3.
What are the necessary conditions for deadlock occurrence?
Consider the five processes Po, Pr, Pz, Pz, Pa and three resources
Rr, Rz, R3 resources. Type R1 has 8 instances, & has 4 instances
and R3 has 9 instances. Allocation and maximum matrix is siven
below:

Answer the following questions using Banker's Algorithm:
i. What is the content of need matrix.
ii. Is the system in a safe sequence? Ifyes, give the safe sequence.
Explain different methods for recovery from a deadlock.
Explain-Resource-Allocation graph in detail.
Consider the five processes Po, Pr, Pz,Pz, P+ and three resources
Rr, &, R3 resources type R1 has 10 instances, Rz has 5 instances
and R3 has 7 instances. Allocation and max matrix is siven below:

Answer the following questions using Banker's Algorithm:
i. What is the content of Need Matrix.
ii. Is the system in a safe sequence? Ifyes, give the safe

sequence.
Explain deadlock prevention strategies.
Consider the following snapshot of system. A system

lOct.2015 - 4Ml

I O ct.1 5.1 2.1 1 . Apr.1 1 -4 /rrll

tOct.2015 - 4Ml

IAor.2015 - 4Ml

tAor.2015 - 4Ml

lApr.2015 - 4Ml

tOct.2014 - 4Ml

lOct.2014- 4Ml

4.
5.

6.

has 5

D.5 and four resources t A thro

Answer the following question using Banker's Algorithm.
i. What are the content of matrix need.
ii. Is the system in safe states? Give the safe sequence

ir''A i;,,ii ini.Mailtfi[lffr,ij:ir
.f;tii ijR;iillriffi:i :fiti;,r:.I'r'iFtiri i,f;tt

Po a 0 2 I z
Pr z I 2 z
Pz 2 0 3 0 4
Pr 1 1 z 2 z z
Po a 0 5 z

r;:Allbr*ti&ii,:i
,Kji Fl+,ri .r::ff*rl rRi Ltd,riir r.Sti:r

fn 0 I 0 7 ?

Pr 2 0 0 3 z 2
Pz n z I 0 z
p- z 1 z 2 2
Pa 0 0 z 4

lApr.2013 - 4Ml 9. Consider the following snapshot of system. A system has 5

processes pl through p5 and four resources type A through D.and fbur resources tyne A
Process Allocation Max Available

ABC ABC ABC
Pn 232 975 332
Pr 400 522
Pt 504 1104
P" 433 444
Pa 224 655

Answer the following questions using Banker's Algorithm:
i. What is the content of Need Matrix?
ii. Is the system in -a Safe State? If yes, give the safe

sequence.
Explain Deadlock Detection in detail.
Explain Deadlock Prevention in detail.
Consider the system with 5 process P: {Po, Pt,Pz, P3, Pa} and
fourresources tlpe {A, B, C, D}.There are 3 instances of type
A, 10 instances of type B, 15 instances of type C and 7 instances
of type D.

10.

11.

12.

lApr.2013 - 4Ml
lOct.2012- 4Ml

tOct.2012- 4Ml

IApr.2012- 4Ml

1Apr.2012- 4Ml

ta
lJ.

t4.

Answer the following question using Bankers Algorithm:
i. Is the system in a Safe State?
ii. If a request from process P4 arrives for (0, 2, 0, 2) can it

be granted.

What is Deadlock Prevention? Explain Deadlock Prevention
Shategies.

Explain the term 'Selecting a Victim' in the Context of
Deadlock Recovery.

o,
ur$r011

Allocation
A B c D

Po n 1 z 1

Pr II 2
Pz 0 0 0
Pr ?

Pt 0 0 4 1

MA(
A B c D

Pn 0 8 4 4
Pt 0 6 2
Pz I 6 4 1

P. J 7 5
Pa 0 5 5

]UIEM
MAIUAGEIUIENT

1. Introduction

The main purpose of a computer system is to execute programs. These progmms, together with the
datathey access, must be atleast partially in main memory during execution.

The part of the operating system that manages memory is called the memory manager. Its job is to
keep track of which parts of memory are in use and which part are not in use, to allocate memory to
processes when they need it and deallocate it when they are done, and manage swapping between
main memory and disk when main memory is not big enough to hold all the processes.

1.1 Address Binding

The binding of instructions and data to memory address is known as address binding.

A program resides in the disk in binary executable form. When it is brought in main memory, it is
called as a process.

Qla4fet, 7

ORY

ii#d"E iiitirtiiiirrffi

waiting to be executed.At a given tirne, there can be more than one processes in the main memory
There processes form a input queue.

A user program has to go through several steps during execution ffigure 7.1).

Compile time

Figure 7.1: Multi-step processing of user program

Classically the binding of instructions and data to memory addresses can be done at any step along
the way.

1. Compile time binding: If it is known at compile time where the process will reside in
memory then absolute code can be generated.

Example, MS-DOS, .Com format programs are absolute code bound at compile time.

2. Load time binding: If it is not known at compile time where the process will reside in
memory, then the compiler must generate relocatable code in this case final binding is delayed
until load time.

Example, Relocatable programs have load time binding.

Compiler or
assembler

3. Run-time binding: If the process can be moved during its execution from one memory
segment to another, then binding must be delayed until run-time special hardware must be
delayed until run time. Special hardware must be available for scheme to work.

Example,In paging systems this binding is used. MMU is used to perform run-time mapping.

1.2 Logical Verses Physical Addresses

The address generated by CPU is called logical address, whereas

the address seen by memory unit i.e. one loaded in the memory
register is called physical address.

The compile time and load time binding methods generate identical,
logical and physical addresses but execution time an address binding
scheme results in different logical and physical addresses. Logical
address are also called as virtual address. The set of all logical
addresses of a program is its logical address space and the set of all
physical addresses is a physical address space.

The run-time mapping of virtual to physical addresses is done by a hardware device called Memory
Management Unit (MMU). It makes use of a register called as relocation or base register.

The value in the base register is added to every address generated by any user process . For example;
If the Fence Register or Base Register is at 1400, then an attempt by the user to address location 0 is
dynamically relocated to 1400. The user never sees the real address (figure 7.2).

Figure 7.2: Dynamic relocation using base register

I1.3 Static Linking

Static linking is the process of copying all library modules used in the program into the final
executable image. This is performed by the linker and it is done as the last step of the compilation
process. The linker combines library routines with the proglam code in order to resolve external

references, and to generate an executable image suitable for loading into memory.

When the program is loaded, the operating system places into memory a single file that contains the

executable code and data.

This statically linked file includes both the calling program and the called program.

Static linking is performed by programs called linkers as the last step in compiling a program.

Linkers are also called link editors.

Statically linked files are significantly larger in size because external programs are built into the

executable files.

ln static linking if any of the external program has changed then they have to be recompiled and re-

linked again else the changes won't reflect in existing executable file.

Statically linked program takes constant load time every time it is loaded into the memory for
execution.

Programs that use statically-linked libraries are usually faster than those that use shared libraries.

In statically-linked programs, all code is contained in a single executable module. Therefore, they

never run into compatibility issues.

1.4 Dynamic Loading

In our discussion so far, the entire program and data must reside in main memory. So the size of the

program is restricted by the size of main memory. To bbtain better memory utilization, we can use

dynamic loading. Here a routine is not loaded until it is called. All routines are kept in disk in a
relocatable format. The main program is loaded and executed, when a routine needs to call another

routine, it first checks if the needed routine is loaded, if not, it calls the relocatable linking loader to

load the required routine.

The advantage here is that an unused routine is never loaded. Dynamic loading does not require

special support from the operating system. It is the responsibility of the user to design their programs

to take advantage of such a method.

tvtemorv, Manag€nent

{.5 Dynamic Linking and Shared Libraries

Figure 7.1 also shows dynamic linked libraries. If the operating system supports only static linking,

then the system libraries are also linked like all other object modules. The concept of dynamic

linking is similar to that of dynamic loading. The linking of a program to system libraries is
postponed upto execution. Here a stub is included in the image for each library routine reference.

This stub is a small piece of code that indicates how to locate the appropriate memory resident

library routine. When executed, the stub checks if the routine is already in memory, if not, it is
loaded into memory. It replaces itself with the address of the routine and executes the routine.

Unlike dynamic loading, dynamic linking generally requires help from the operating system.

{.6 Overlays

To enable a process to be larger than the amount of memory

allocated to it, we can use overlays. The idea of overlays is to keep

in memory only those instructions and data, that are needed at any

given time. When other instructions are needed they are loaded into

space occupied previously by instructions that are no longer needed.

nii. anii t anz,'
What is the.use.bf '. '
'Overlays, in Membry."''

,Man#rnent?'..' ,rr;
,rffiebfZ.; :4,i,4',', :: i..

'Wrttl'a strort not€' on'
,Ov,eflqys. ,' : ' :

For example: Consider a two pass assembler. This program can be roughly divided into following
parts:

Pass 1

Pass 2

Symboltable

Common routine

70 KB

80 KB

20 KB

30 KB

If loaded completely the program would occupy 200 KB of memory, but using an overlay manager

(size 10 KB), we could utilize the same memory space for pass 1 and pass 2 as shown in figure 7. j .

We can now mn the assembler in 150 KB of memory.

Symbol
table 20k

30k

10k

Common
routines

Overlay manager

) (Pass 1 -1 pass z

Figure 7.3: Overlays for 2 pass assembler

70K 80K

2. Swapping

Moving processes from main memory to disk and back is called
swapping. It is a simple memory / process management technique
used by the operating system to increase the utilization of the
process or by moving some blocked process from the main memory
to the secondary memory (hard disk).

A process needs to be in memory for execution. However, it is possible that a process may be
swapped-temporarily out of memory to a backing store and then-brought back into memory for
continued execution.
For example.' In a multiprogramming, environment if round robin CpU scheduling is used, then
when the time slot of a process is over and the CPU jumps to the next process, then this process can
be swapped to the backing store and brought Uact wtren again it will be allotted a time slot by the
CPU (figure 7.4).

Operating
system

User
space

Q Swap out

t't:"
@ swap in

Fmna

2

Main memory Backlng stor€
Figure 7.4: Swapping of 2 processes using a disk ai a backing store

#diliilrlirii#

A variant of this swapping is used for priority based scheduling. If a higher priority process arrives
and is to be executed, the scheduler swaps out the lower priority process and swaps in the higher
priority process. This variant is often called roll-out, roll-in.

If for a process which is swapped out binding is done at assembly time or load time, then the process
must be swapped in, in the same address space, but if the binding is in execution time, then the
process can be swapped in, in any different addresses also.

The context switch time of swapping is fairly high. Swapping is also constrained by various factors
like pending I/O. If a process has pending UO andit is swapped out then it might create problems.

Currently, standard swapping is used in very few systems because it requires too much swapping
time and provides too little execution time to be a good memory management solution.

A modification of swapping is used in many versions of IINIX. Swapping is normally kept disabled,
but it would be started if many of the process are in main memory and all using threshold of
memory.

The time taken by the swapper to swap a process that can be swapped temporarily out of main
memory to a backing store, and then brought back into memory for continued execution is called
swap time.

3. Gontiguous Memory Allocation

3.{ Single Partition Allocation (Monoprogramming
without Swapping or Paging)

The simplest possible memory management scheme is to have just 1 process in memory at a time
and to allow that process to use cell of the mernory. When the system is organized in this way, only
process at a time can be

;::: H o s =.pera,ns svs,em

0

Figure 7.5: Memory layout for above system

3.2 Multiprogramming without Swapping or Paging i.e.
Multiprogramming with Fixed Partition (MFT)

In this technique memory is divided up into n (possibly unequal) partition. When a job arrives it can

be put into the job queue for the smallest partition, large enough to hold it. Since the partitions are

fixed in this scheme any space in a partition not used by a job is lost. The disadvantage of sorting the

incoming jobs into separate queues becomes apparent when the queue for large partition is empty

and queue for small partition is full.

Figure 7.6: llP gueue for every partition

An alternate organization is to maintain a single queue.

Whenever partition becomes free the job closest to the front of queue that fits in it could be loaded

into the empty partition and run. Since it is undesirable to waste a large partition on a small job a
different strategy is to search the whole i/p queue, whenever the partition becomes free and pick the

largest job that fits. Such scheme is used by 05/360 on large IBM mainframes called as MFT or

OS/MFT.

1O MB

400K

3.3 Multiple Partition Allocation (Multiprogramming with
Variable Partitions) (MVT)

In this scheme, the operating system keeps a table indicating which parts of memory are available

and which are occupied.

Initially all memory is available for user processes and is considered

as one large block of available memory, called a Hole.

When a process arrives and needs memory, we search for a hole

large enough for this process. If we find one, we allocate only as

much memory as is needed, keeping the rest available to satisfy

future requests.

It is possible to combine all the Holes into one big Hole by moving all

far as possible, this technique is known as Memory Compaction.

Example,

Show the execution (allocator) of these processes using MVT Scheduling alg (2560 k RAM).

Solution

2560

2300

2000

1 000

(At start)

400

0

the processes downward as

Ps

Pz

Pr

o.s.

iliiti{illilitiii,:i'fi 1,,

Pz deallocates
and Pa allocates

Pg

Pq

Pr

o.s.

2560

2300

2000

1 700

1 000

400

0

Ps

Pa

Ps

o.s.

2560

2300

2000

1700

I 000

400

Ps

Ps

3.S.

2560

2300

2000

1 700

1000
900

400

0

After 5 ms

After 10 ms

At 13 ms P4 deallocates

Ps allocates
Pr Deallocates

i

At 20 ms P3 deallocates

Then,
At 25 ms P5 deallocates

mntu$tu*il#ffib#

2560

2300

2000

1700

1000

900

400

0

Ps

o.s.

2560

2300

2000

1 700

1 000

o.s.
400

0

Difference between MW and MFT

iit1ii"11+irjlll'1

MW was considerably larger and more complex
than MFT and therefore was used on the most
powerful System 360 CPUs.

MFT was intended to serve a stop-gap until
Multiprogramming with a Variable number of Tasks
(MVT), the intended 'target' configuration of OS/
360. became available in 1967.

It treated all memory not used by the operating
system as a single pool from which contiguous
'regions' could be allocate as required by an
indefinite number of simultaneous application
programs.

Early versions of MVT had many problems, so the
simpler MFT continued to be used for many years.
After introducing new system 370 machines with
virtual memory, in 1972 MFT was developed into
OSA/Sr, the last system of this particular line.

3.

This scheme was more flexible than MFT's and in
principle used memory more efficienfly, but was
liable to fragmentation-after a while one could find
that, although there vyas enough spare memory in
total to run a program, it was divided into separate
chunks none of which was large enough.

After introducing new System/370 machines with
virtual memory, in 1972 MFT was developed into
OSA/S1, the last system of this particular line.

4.

ln 1971the Time Sharing Option (TSO) for use with
MVT was added as part of release 2001. TSO
became widely used for program development
because it provided an editor. The ability to submit
batch jobs, be notified of their completion, and view
the results without waiting for printed reports, and
debuggers for some of the programming languages
used on System/360.

The first version of MFT shared much of the code
and architecture with PCP, and was limited to four
partitions. lt was very cumbersome to run multiple
partitions. Many installations used Houston
Automatic Spooling Priority (HASP)to mitigate the
complexity. MFT Version ll (MFT-Il) shared much
more of the Control Program and Scheduler code
with MVT, and was much more flexible to run. The
maximum number of partitions increased to 52.

c. Multiprocessing with a variable number of tasks. Multiprocessing with a fixed number of tasks.

6.
Both the number and size of the partitions change
with time.

Both the number and size of the partitions are fixed.

7.
Introduces external fragmentation, i.e., holes outside
any regron.

Introduces Internal fragmentation.

8.
There is dynamic address translation (during run
time).

No dynamic address translation.

3.4 Fragmentation

The segments of a program can be stored anywhere in the memory,
but each segment has to be stored in a continuous memory.

Segmentation may suffer from extemal fragmentation as it
possible that there is free memory but is not contiguous to
allocated to the next sesment.

Internal and External Fragmentation

As processes are loaded and removed from memory the free memory
space is broken into little pieces called Holes.

Extemal fragmentation exists when enough total memory space
exists to satisfy a request, but it is not contiguous, storage is
fragmented into a large number of small holes.

ls

be

iriifild#ffilN} g ffi
Memory that is internal to a partition, but is not being used is called
internal fragmentation.

MFT: Internal fragmentation

MVT: External fragmentation

Paging: Internal fragmentation

Segmerttation: External fragmentation

One solution to the problem of external fragmentation is compaction.

The goal is to shuffle the memory contents to place all free memory
together in one large block.

4. Free Space Management Techniques

The set of holes is searched to determine which hole is best to allocate.

1. First fit algorithm: The memory manager finds a l" hole that
is big enough, the hole is then brokpn up into 2 pieces, one for
the process and one for the unused memory. It is the fastest
algorithm.

Next fit algorithm: It is similar to 1't fit, except that it keeps track of where it finds a suitable
Hole. The next time it is called, it starts from where it left off. It has slightly worse
performance than 1" fit.

Best fit algorithm: It searches the entire list and takes the smallest hole that is adequate.

It is slower than above two algorithm. It also results in more wasted memory than above two
algorithms.

Worst fit algorithm: It always takes the largest available hole so it is best.

Yet another allocation algorithm: It is Quick fit, which maintains separate lists for some of
the common sizes requested.

,,

3.

4.

f,.

Api.20t$r; lM,1
wnat is Externbl,,
fragmentation? ,

Aci:t0tl;,Hrl ,

what is,tn ar..
fragrnantation? i

Allocation Swap of Space

ln some systems, when a process is in memory, no disk space is allocated to it. When it must be
swapped out, space must be allocated in the disk swap area for it.

On each swap, it may be placed somewhere else on the disk. The algorithms for managing swap
space are the same. Ones used for managing main memory.

In other systems, when a process is created, swap space is allocated for it on the disk using above
algorithms. Whenever a process is swapped ou! it is always swapped to its allocated space, rather than
going to a different place each time.

When the process exits, the swap space is deallocated.

6. Virtual Memory (Overlays)

In early days of computing, IT industry was facing a problem that some programs were too big to fit
in the available memory.

The solution usually ardopted was to split the program into pieces called overlays. Overlays would
start running first.

When it was done it would call another overlay.

Although the actual work of swapping overlays in and out was done by the system, the work of
splitting the program into pieces had to be done by the programmer.

Splitting up large programs into small, modular pieces was time consuming and boring.

The alternate method that was deviced has come to be known as virtual memory (Father Inglnm, 196l).

The basic idea behind it is that the combined size of the program, data and, stack (i.e. the three
segments code, data and stack) may exceed the amount of physical memory available for it.

The operating system keeps those parts of the program curreirtly in use in main memory and rest on
disk.

Virtual memory and multiprogramming fit together very well. While a program is waiting for part of
itself to be swapped in, it is waiting for VO and cannot run, so the CPU is given to another process.

7. Paging

When a program uses an instruction like

MOVE REG 1OOO

On a computer which uses virhral memory, these virtual addresses do not go directly to the memory
bus. Instead, they go to a Memory Management Unit (MMU), a chip or collection of chips that maps
the virtual addresses onto the physical memory addresses.

CPU card

MMU sends physical addresses to memory

Figure 7.7

The virtual address space is divided up into units called pages.

The corresponding units in the physical memory are called page frames. The pages and page frames
are always of the same size.

Page sizes from 512 bytes to 8 k are commonly used with 64 k of virtual address space and 32 k of
physical memory, we have 16 virtual pages and 8 page frames. Transfer unit is page virtual address.

CPU sends virtual
addresses to MMU

*dli

Virtual address
space

Physical address

4

x

12

16

20

24

28

32

^
1

OK4K

4K.8K

8K-12K

12K-16K

16K-20K

2AK-24K

24K-28K

28K-32K

32K-36K

36K40K

40K44K

4l'K48K

48K-52K

52K-56K

56K-60K

Figure 7.8

Unmapped virtual pages are shown by 'X' in the above .figure.In the actual hardware, a presenV

absent bit in each entry of virtualpage table keeps track of whether the page is mapped or not.

If the program tries to use an unmapped page, the MMU notices that the page is unmapped and
causes the CPU to trap to the operating system. This trap is called apage fault. The operating system
picks a little used page frame and writes its contents back to the disk. It then fetches the page just
referenced into the page frame just freed, changes the map, and restarts the trapped instruction.

Page Fault

In virtual Memory management, when we use demand paging
concept, i.e., instead of loading entire program into memory to
execute only needed pages are loaded whenever any page is
demanded then only that page is loaded into memory. When
programs try to access a page which is not in the memory, page
fault occur. For every page loaded at least once there will be at least
one page fault.

Actions taken by O.S. in handling a page fault:

i. O.S. checks reference bit of that page if it is legal or not.

iirit'irliiffir"fii $

7. Paging

When a program uses an instruction like

MOVE REG 1OOO

On a computer which uses virtual memory, these virtual addresses do not go directly to the memory
bus. Instead, they go to a Memory Management Unit (MMU), a chip or collection of chips that maps
the virtual addresses onto the physical memory addresses.

CPU card

MMU sends physical addresses to memory

Figure 7.7

The virtual address space is divided up into units called pages.

The corresponding units in the physical memory are called page frames. The pages and page frames
are always of the same size.

Page sizes from 512 bytes to 8 k are commonly used with 64 k of virtual address space and 32 k of
physical memory, we have 16 virtual pages and 8 page frames. Transfer unit is page virtual address.

CPU sends virtual
addresses to MMU

Virtual address
space Physical address A/1

1
OK4K

4K.8K

8K-12K

12K-16K

16K-20K

2AK-24K

24K-28K

28K-32K

32K-36K

36K40K

40K44K

44K48K

48K-52K

52K-56K

56K-60K

4

A

12

16

2A

z4

28

32

Figure 7.8

Unmapped virtual pages are shown by 'X' in the above -figure.ln the actual hardware, a present/

absent bit in each entry of virtual page table keeps track of whether the page is mapped or not.

If the program tries to use an unmapped page, the MMU notices that the page is unmapped and

causes the CPU to trap to the operating system. This trap is called a page fault. The operating system

picks a little used page frame and writes its contents back to the disk. It then fetches the page just

referenced into the page frame just freed, changes the map, and restarts the trapped instruction.

Page Fault

In virtual Memory management, when we use demand paging
concept, i.e., instead of loading entire program into memory to
execute only needed pages are loaded whenever any page is
demanded then only that page is loaded into memory. When
programs try to access a page which is not in the memory, page
fault occur. For every page loaded at least once there will be at least
one page fault.

Actions taken by O.S. in handling a page fault:

i. O.S. checks reference bit of that page if it is legal or not.

ii. If bit is invalid process is terminated.

iii. If bit is valid then we now have to bring page in.

iv. Check if there is any frame free to swap page in. If frame is available page is swapped in.
v. If frame is not available, make frame free with available page-replacement algorithm and then

swap require page in.

7./l Internal Operation of MMU

The incoming 16-bit vertical address is split up into a 4- bit page number and a 12-bit offset. A page
number is used as an index into the page table, yielding the number of the page frame corresponding
to that virtual page.

Ifthe presenV absent bit is zero, a trap to the operating system is caused. Ifthe bit is one, the page
frame number is found in the page table.

Figure 7.9: InternalOperation of the MMU with 16 4k pages

u 0 1 0 n 0 n 0 U U n 0

---t

0

1

2

4

6

7

I
I

.1n

13

't4

,ti

{_-

,l
1l
;l
'lI

;-1I1l;l;i;l
I;l
N0l
0l
;l
il

3-Pr

---*f

esent/absent bit

r
I

I

1 0 bit offset
copied directly
from i/p to o/p

1 1 0 0 0 0 0 0 0 0 0

Page tabie

triffi*i#*iiirtoiil!, H#idEu&*n*nl

* Virtual page = 2 is used as an index into the page table.

.^. Incoming virtual address 8196

o Outgoing physical address 24580

Is copied to the high order 3 bits of the O/P register, along with the 12 bit offset, which is copied
unmodified from the incoming virtual address together they form a l5- bit physical address. The O/P
register is then put onto the memory bus as the physical memory address.

1- mapped 0- unmapped

8, Page Replacement Algorithms

To illustrate the page replacement algorithms we shall use the reference strings

7, 0, l, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, l, 2, 7, 2, 0, I, 7, 0, I

For a memory with three page frames.

8.{ FIFO Algorithm

This algorithm associates with each page the time when that page was brought into memory. When a
page must be replaced, the oldest page is chosen.

r=trFflFilEF=FH
t-7t tI t-- t-,-_-l t-r-l t-r_l tr. tI

Replace 7 Replace 3

l3ll3 |t--;---t T--;---t
I z ll z

I

lo llo I

t=_-l t-r-l l--rl t-T_l l-T_l
t-T_l t-T_l t-r-_l t-r_l l--rlt-rl f-r_l l--r-l t-r_l Fl

Figure 7.10: The FIFO page replacement

Replace0 Replace2 Replace

3by2

iiiiil#dffiffii $ {

Algorithm is easy to understand and program. However, the performance is not always good.

To illustrate the problems that are possible with a FIFO page replacement algorithm we consider the
reference string-

1,2,3,4, 1,2,5,
1,2,3,4,5

With 3 page frames

n n F-l ll-l ril frl a .r1 tzt
I I l2l l2l l2l l1l l1l l1l lel lel
L1J LlJ L]-] UJ LIJ EJ LgJ Lil LqJ

With 4 page frames

| | l l fl El [Zl t?l t4l l-cl ,il u-]
L--t t--t ti-t tjt tjt Le_l EJ E_l lJ-] a| | l2l l2l l2l l2l l1l l1l l1l ltl lsl
L]-J L1-J LlJ L]-J L!-J LqJ L.?] L9-] t4 L4

We noticed that the number of faults for 4 frames (10) is greater than
the number of faults for three frames (9). This result is most
unexpected and is knownas "Belady's Anomoly".

According to Belady, for some page -replacement algorithm, the
page-fault rate may increase as the number of allocated frames
increases. It is also called as FIFO anomaly, as this situation can
occur only in FIFO page replacement algorithm.

8.2 Optimal Algorithm

This algorithm has the lowest page fault rate of all algorithms. It will never suffer fram "Belady's
Anomoly".It is simply

"Replace the page that will not be used for the longest period of time. "

t]trtrtrtrtrtrtrtr| | l0l l0ll0ll0ll4ll0ll0ll0l
L-| l-rl L:-] A tA LA 11 tA lt-J

Page faults = 9

Unfortunately, the optimal page replacement algorithm,

future knowledge of the reference string. As a result,

comparative studies.

is difficult to implement, because it requires

this algorithm is used mainly for compare

Reference string

7, 0, 7, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, l, 2, 0, 1, 7, o, 7

I

I,

t

8.3 Algorithm (Least Recently Used)

LRU replacement associates with each page the time of that pages last use. When a page must be

replaced, LRU chooses that page that has not been used for the longest period of time.

This strategy is the optimal page replacement algorithm looking backward in time rather than

forward.

Reference string

7, 0, r, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, l, 2, 0, l, 7, 0, 7

[l t-_l Ft Ft E-l E-l lrl l-r-l rt ,l al t'-l
I I lol lol lol lol lol lol lsl lsl l3l l0l l0l
fJ EJ tlj trl A El E_i 13 lg I r-l Lr L]J

This policy is often used as apage replacement algorithm and is considered to be quite good.

Neither optimal replacement nor LRU replacement suffers from Belady's Anomoly. There is a class

of page replacement algorithm called stack algorithms, that can never exhibit Belady's Anomoly.

A stack algorithms is an algorithm for which it can be shown that the set of pages in memory for n

frame and it would be in memorv with n * 1 frames.

Momory Monaoofinnt

8.4 Second Ghance Algorithm (MRU with Reference bit)

The basic algorithm of 2"d chance replacement is a F|FO
replacement algorithm. When a page has been selected however, we
inspect its reference bit. If a value is zero, we proceed to replace this
page. If the reference bit is 1, however, we give that page a second
chance and move on to select the next FIFO page.
When a page gets a second page its reference bit is cleared and its
arrival time is reset to the current time.

Reference string

7, 0, r, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 7, 2, 0, 1, 7, 0, I

trtr trtrtrtrtrt-orr-rr1lr,-1 trt-l t-'1 f'] f'-l E-l ll-l ll-l d H d Er tzlt__J t_J i____J L___Jtrj lrj llj L! A A 14 El t_ei E_l tri Fl

9. Demand Paging

It is similar to a paging system with swapping. Processes reside on secondary memory. When we
want to execute a process, we swap it into memory. Rather than swapping the entire process into
memory, however, we use alazy swapper. Alary swapper never swaps a page into memory unless
that page wide be needed. Since we are now viewing a process as a sequence of pages, the use of
term swap is technically incorrect. A swapper manipulates entire processes, whereas a pager is
concerned with the individual pages of a process.

In the purest form of paging, processes are started up with none of their pages in memory. As soon
as the CPU tries to fetch the first instruction, it gets a page fault, causing the b.S. to bring in the page
containing the first instruction. Other page faults usually follow quickly. After a while, the proceis
has most of the pages it needs and settle down to run with relatively fewpage faults. This straiegy, is
called demand paging because pages are loaded on demand, not in advance.

Problem with this technique is that every time process is loaded into memory it will cause many
page faults, causing wastage of considerable CPU time, since it takes the O.S. a few milliseconds of
the CPU time to process a page fault. This problem becomes more significant in case of time shared
and system.

2

Oct. 2014 - 4^t ' j
Wrlte a note on second .,

chancepage .i ,.:,

replqcement Atgorlthm :-:
:,

1*..2613-aM 'r .,' r;'.'
Writa'a'itrort'note on 'i ,.r,
Second,ehah6;6. i,. . .:'':
Alg0fithmJ, . ,..'

:'.: ,,..'-l

Definition

The set of pages that a process is curcently using is called its working set. If the available memor)t i,s
too small to hold the entire working set, the process will cause many pagefaults and run very slowly,
since executing an instruction typicalty takes a fraction of microsecond and reading in a page .from
the disk typically takes tens of milliseconds. A program causing pagefaults everyfew instructions is
said to be Thrashing (Denning, 196S b)

Solution is asfollows;

Many paging systems try to keep track of each process working set, and make sure that it is in
memory before letting the process run. This approach is called ihe working sit model (Denning
1970). It is designed greatly to reduce the pagefault rate. Loading the: pages befoie lettin!
processes run is called pre-paging.

{ O. Segmentation

The users view of virtual memory is actually not as a linear array of bytes, but user views the
memory as a collection of variable sized segments with no necessary ordering among segments.

Figure 7.11

Segmentation is a memory management scheme that supports this user view of memory. A logical
address space is a collection of segments. Each segment has a name and a length. The user therefore

I
tro.*'r"

I

Seg-0

|-;,"l
I

o'"n*'
I

Seg-2

l?ltallcl
L_lJ
Seg€

r-r
I symnot II t"or" Irl

Seg'4

f-,1

t!
Seg-1

specifies each logical address by two quantities: a segment number and an offset within the segment
(contrast this scheme with the paging scheme, where the user specified only a single address, which
was partitioned by the hardware into a page number and an offset, all invisible to the program).

Thus a logical address consists of a two tuple

<segment no, offset)

Although logical address is referred by a tuple, the actual physical memory is still, of courseo a 1 - D
sequence ofbytes.

Themappingof2-Duserdefinedaddressesintol-Dphysicaladdressesiseffectedbyasegment
table.

Each entry of the segment table has a segment base and a segment limit. The segment base contains

the starting physical address where the segment resides in memory, whereas, the segment limit
specifies the length of the segment.

Physical address space

End Start

2400 0

1

2

3

4

limit Base

1 000 1400

400 6300

400 4300

1 100 3200

1 000 4700

3200

4300

4700

5700

6300

*i#,ti

Advantages of segmentation

i. It simplifies the handling of data structures that are growing or
shrinking.

ii. It is usually visible, unlike paging which is invisible tb the
progTammer.

iii. It provides a convenient way of organizing programs and data
to the prografilmer.

Disadvantages of Segmentation

i. It suffers from external fragmentation.

ii. Address translation, i.e.o conversion from logical address to physical address is not a simple
function, as compared to paging.

{O.{ Segmentation With Paging

It is very common for the size of program modules to change dynamically. For instance, the
programmer may have no knowledge of the size of a growing data structure. If a single address space
is used, as in the paging form of virtual memory, once the memory is allocated for modules they
cannot vary in size. This restriction results in either wastage or shortage of memory. To avoid the
above problem, some computer systems are provided with many independent address spaces. Each
of these address spaces is called a segment. The address of each segment begins with 0 and segments
may be compiled separately. In addition, segments may be protected individually or shared between
processes. However, segmentation is not transparent to the programmer like paging. The
programmer is involved in establishing and maintaining the segments.

Some operating systems allow for the combination of segmentation with paging. If the size of a
segment exceeds the size of main memory, the segment may be divided into equal size pages.

ffi

Segment table Page table

Flgure 7.12

The address consists of three parts
i, Segment number

ii. The page within the segment

iii. The offset within the page.

The segment number is used to find the segment descriptor and the address within the segment is
used to find the page frame and the offset within that page.

Difference between Paging and Segmentation

Paging: Computer memory is divided into small partitions that are all the same size and referred to
as, page frames. Then when a process is loaded it gets divided into pages which are the same size as
those previous frames. The process pages are then loaded into the frames.

ntation: Computer memory is allocated in various sizes (segments) depending on the need for
space by the process. These segments may be individually protected or shared between
s. Commonly you will see what are called 'segmentation Faults' in programs, this is
the data that is about to be read or written is outside the permitted address space of that

So now we can distinguish the differences and look at a comparison between the two:

because
process.

Mrtual address

Comparlson between Paglng and Segmentaflon

ln short, Segments can be of different lengths, so it is harder to find a place for a segment in memory

than a page. With segmented virtual memory, we get the benefits of virtual memory but we still have

to do dynamic storage allocation of physical memory. In order to avoid this, it is possible to combine

segmentation and paging into a two-level virtual memory system. Each segment descriptor points to
page table for that segment. This give some of the advantages of paging (easy placement) with some

of the advantages of segments (logical division of the program).

Segmentation: Rectifies internal fragmentation.

Paging scheme

i. Rectifiesexternalfragmentation.

ii. Combine both schemes and eliminates both problems in managing the memory.

Paged segmentation

i. Divide program's logical address space into one or more segments.

ii. Maintain a page table for each segment.

iii. Each segment pointer points to page table.

iv. Segment paging is opposite to above explanation.

Belady's Anamoly

The Belady's anomaly occurs in case of the FIFO page replacement
policy in the operating system. When this FIFO is used and the
number of page frames are increased in number, then the frames that
are required by the program varies in alarge range(due to large no of
pages) as a result of this the number of page faults increases with the
number of frames. This anomoly doesn't occur in the LRU
(Least Recently Used) scheduling algorithm.

It is also called FIFO anomaly. Usually, on increasing the number of frames allocated to a process'
virtual memory, the process execution is faster, because fewer page faults occur. Sometimes, the
reverse happens, i.e., the execution time increases even when more frames are allocated to the
process. This is Belady's Anomaly. This is true for certain page reference pattems.

Solved Examples
Consider the following page reference string:
61 41 5, lr21 6, Sr 4, Sr31 4,
The number of frames is 3. Show page trace and calculate
page faults for the following page replacement schemes:
i. LRU ii. F'IFO

1.

rffi

Reference String

6,4,5,1,2,6,5,4,5,3 o4

page frames: 3

i. FIFO

trtrtrHFFT=F=
Ef f f [-1 1T-1 lf-l I

replace 6

t--6
_lt---6lr-lt-61

l---rl T--rt t--rt t-rtt--rt l---rl lr-l l-3-_l
replace 2 replace 5

EEEHEHEtrl ljj Ll_i tlj L1_l L1-J LoJ

2. Consider the following page reference string:
4, 3, 2, l, 4, 3, 5, 4, 3, 2, l, S

The number of frames are 3. Show page trace and
calculate page faults for the following page replacement
schemes: a. FIFO b. MFU

Solution
Page Reference Sring

4, 3, 2, l, 4o 3, 5, 4, 3, 2, L, 5

Number of page frames: 3

replace 4 replace 5

r_61
l2lf-s I

replace 1

Total page faults:9
LRU

TI TI
tttlt]tr
XX

Page faults: 03 + 94 - 67

FIFO
fl n n E1 E1 A El E-l l-tl l-tl I-51
|--t ..1 E-j gl F-l rJ r-l ir-l E-l tr-l !-l
L__l tll E_l E_l L1l Lt-] L! t_ql Lil Lq_l li_l
XXXXXXXXX

Total number of page faults .'. 6 + 3 = 9

MF'U
Reference String
4, 3, 2, I, 4, 3, 5, 4, 3, 2, t, 5

t-_l l-l l-l n1 ll i-,1 frl f'l f.l tlf-l n f.l f.l t'l f-'l t-,r] tsl t'l f;l
LI LI T-] tll EJ II LI EJ E-I L?l
XXXXXXXX

Number of page faults .'. 05 + 03 : 08

3. Consider the following page reference string:
1,,3,,2,, 1r 4.,31 5) 41312, lr 5
The number of frames are 4. Show page trace and
calculate page faults for the following page replacement
schemes:

i. FIFO ii. LRU
Solution

Given: Reference string is I, 3, 2, I, 4, 3, 5, 4, 3, 2, 1, 5

Number of Frames 4

i. FIF'O
132143543215t!ETt|ETETEEETI I l3l l3l l3l lsl lel lsl lsl lsl lal lrl lrl

| | I I l2l l2l l2l l2l l2l l2l l2l l2l l2l l2lrtrtrtrtrrrEtrtrEtrp.F=././,/X./X./XXX,/x
Total page faults:06

ii. LRU
132143543215EEEETIETTEEruEELJ LeJ |J_l LsJ | il Lsl t_e.l l_s_l Lel E_J l_e_l t_e-JLl Ll 3) LA Z) t2-l LlJ L!-l Lll Lll |1| |t IrtrtftrttIEtdEtdtdEtilr''/./X,/X./XXaT7

Total page faults:08

Consider the following page reference string:
7, 0, l, 2, 0, 3, 0, 4, 2r3, 0, 3, 2, l, 2, 0, l, 7, 0, l.
The number of frames are 3. Show the page trace and
calculate the page faults for the following page
replacement schemes.

i. LRU ii.
Solution
i. LRU

Optimal Page Replacement

ll.

PageFault y y y y N y
Occurred?

Total number of page faults: 12

Optimal Replacement

PageFault y y y y N y
Occurred?

Total number of page faults : 8

5. Consider the following page reference string:
2, 3, 2, l, 5, 2, 4,, 5, 3, 2, 5, 2
The number of frame are 3. Show page trace and calculate
page faults for the following page replacement schemes:
i. FIF'O ii. MFU

Solution
i. FIFO

2321524s3252

ll.

Ref. 01203042303212070'1
Frame 1 7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 7 7 7

Frame2 0 n 0 0 0 0 0 0 3 J 3 3 3 3 0 n 0 0
Frame 3 1 1 1 3 3 J 2 z 2 2 2 2 2 2 2 2 1

Ref. 012030423032120701
Frame 1 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7

-l

Frame2 0 0 U 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0
Frame 3 1 1

i 3 3 3 3 3 3 3 3 I 4
1 I 1 1

Pase frames:3
t

L_--] L_]I=EtTEEEEEI I l3l l3l l3l l3l l2l l2l l3l l3l l2lrEr]|rzrEtttdtttsttdtd
Page faults:4
MFU
Page frames:3
2321524532s2f]EEtTEEL] l3ll3lLlJ Ll_] [51t2t t2t l2t l2l l2l l2l
Page faults : 3

lifitlig,iiiiriiil\jiii

SUnaMARY
r The main purpose of a computer system is to execute programs. These programs, together with the data

they access, must be at least partially in main memory during execution.

r There are three types of bindings

a. Compile time binding b. Load time binding c. Run-time binding

o As process are loaded and removed from memory, the free memory space is broken into little pieces
called Holes.

r External fragmentation exists when enough total memory space exists to satisfy a request but it is not
contiguous storage is fragmented into a large number of small holes.

o Memory management techniques are

a. Single partition allocation: lt keeps only one process in memory at a time and allow that process
to use all of the memory

b. Multiprogramming with in fixed partition; In this memory is divided into n partition when a job

arrives it can be put into the l/O queue for the smallest partition large enough to hold it.

c. Multiple partition allocation: In this scheme, the O.S. keeps a label indicating which parts of
memory are available which are occupied.

r There are various free space management techniques like

a. First fit algorithm b. Next fit algorithm
c. Best fit algorithm d. Worst fit algorithm e. Quick fit algorithm

o Overlays: lt is to split the program into pieces called overlays, overlay zero would start running first.
. Page Frames: The corresponding units in a physical memory are called page frames.

o Pages: The virtual address space is divided up into units called page.

a set: The set of pages that a process is cunently using is called as a working set.

WPU ouestions

IOct.1S. A,pr.13 - 2Ml
t4,pr.2015 - 2Ml
IApr.2015 - 2Ml

IOct.2014- 2Ml

IOct2014- 2Ml

1Oc1.14.12- 2M1

IApr.2013 - 2Ml

IAor.2013- 2Ml

14or.12.11 - 2Ml 8.

9.

Define the term logical address.
What is External fragmentation?
Define Swap time.
Define static linking.
What is Intemal fragmentation?
Define Physical Address.
List various techniques of free Space Management in File
system.

Define Belady's Anomaly.
What is Swapping?

10. Explain Belady's Anomaly.
What is meant bv Address Bindi

Differentiate between internal frasmentation and external
fragmentation.
Write a short note on segmentation
Consider the following page reference string: | , 2, 3, 4, 2, 1 ,

5,6,2,1,3. Find the number of page fault for the following
algorithm with 3 frames: i. FIFO ii. LRo
Consider the followine iob oueue.

t.

2.
aJ.

4.

1Apr.2012- 2Ml

IOct.2011 - 2Ml

1Oct.2015- 4M'l

lOct.2015- 4Ml

tOct.2015- 4Ml

tOct.2015- 4Ml

t4,pr.15.12 - 4Ml

t4or.15.12 - 4Ml

lApr.20'15 - 4Ml

lApr.2015 - 4Ml

tAor.2015 - 4Ml

IAor.2015 - 4Ml

IApr.2015 - 4Ml

IOct.2014- 4Ml

lOct.2014- 4Ml

lOct.2014- 4Ml

Show the memory map of various stages by using MVT
scheduling.Assume the total memory is of 3560 K and monitor is
of 400 K and all jobs are arrived at same time.

5. What is page fault? Explain the different steps in handling a page

fault.
6. Differentiate between MVT and MFT iob scheduler.
7. Write a note on memory compaction.
8. Explain overlay's in detail with diagram.
9. Explain the overlapped swapping in detail.
10. Consider the following page reference string: 7,5,4,9,4,7,8, 5,

2, 3, 4,7, 9,7, 4.Find the number of page fault for the following
algorithm with 3 frames: i. LFV ii. FIFO

11. Consider the follow'lnq loD queue.
,. #.--r,'I:ffiififi tr

I 80K 9
2 1 10K 4
3 20K 18
4 60K 5
c 40K 10

Show the memory map of various stages by using MVT
scheduling. Assumption total memory is of 400K and monitor of
100K and all jobs are arrived at same time.
Explain Inverted page table with diagram.
Consider the following reference string 5, 4, 3, 2, 5, 4, 6, 5, 4, 3, 2,
6. How many page fault occurs for the following algorithm with 3

page frames. i. Optimal ii. FIFO
Explain resident monitor in detail.

11.

12.

13.

IOct.2014- 4M1

lOct.2014 - 4Ml

lOct.2014- 4Ml

IApr.2013 - 4Ml t7.

IAor.2013 - 4Ml

IApr.2013 - 4Ml

IAor.2013 - 4Ml

tOct.2012- 4Ml

lOct.2012- 4Ml

lOct.2012= 4Ml

IOct.2012- 4Ml

lAor.2012- 4Ml

lApr.2012- 4Ml

IOct.2011 - 4Ml

i. 0,430
iii. 4,1t2

ii. 3,400
iv. 1,10

t4.
15.

16.

18.

19.

20.
2t.

22.
23.

24.
25.

Write a note on second chance page replacement Algorithm.
Explain MFT (Multiple Contiguous Fixed Partition allocation).
Consider the

What are Physical Addresses for following logical addresses?

26.
27.

Consider the following page reference string:
6,4, 5, l,2o 6, 5, 4, 5,3, 4,
The number of frames is 3. Show page trace and calculate page
faults for the following page replacement schemes:
i. LRU ii. FIFO
Explain in detail M.F.T. Job Scheduling.
Explain Swapping of two processes using disk as a backing store
with diagram.
Write a short note on Second Chance Algorithm
Consider the following page reference string:
4, 3, 2, l, 4, 3, 5, 4, 3, 2, l, 5

The number of frames are 3. Show page hace and calculate page
faults for the followingpage replacement schemes:
a. FIFO b. MFU
Explain in detail M.V.T. Job Scheduling.
What do you mean by Segmentation? Explain the advantages of
Segmentation.
Write a short note on Overlays.
Consider the following page reference string:
r,3,2, 1,4,30 5,4,3,2, r,5
The number of frames are 4. Show page trace and calculate page
faults for the followingpage replacement schemes:
i. FIFO ii LRU
Write a short note on Demand Paging
What is Fragmentation? Compare lnternal and External
Fragmentation.

Qr
utSl0ll

FILE Svs
elafren I
TEM

1. lntroduction and File Goncepts

File

A file is a named collection of related information that is recorded
on secondary storage. File represents programs and data.

File Attributes

A file is named and is referred to by its name. It has certain attributes
such as:

1. Name: It is a symbolic name kept in a readable form.

2. Identifier: It is a unique tag. Usually a number used to
uniquely identify its file. It is in non-human readable form.

3. Type: This information is needed for those systems that support
different types.

4. Location: This information is a pointer to a device and points
to the location of the file on that device.

f,.

6.

Size: The current size of the file (in bytes, words or blocks)
allowed size.

Protection: Access control information determines who can do

and so on.

Time. data and user identification: The information may

modification and last use.

lri-ii+iiiilrlt

and possibly the maximum

reading, writing, execution

be kept for creation, last

1.1 File Operations

A fi]e is a logical entity, which represents a named piece of information. A file is a mapped onto a

physical device.

There are many ways to map, or to implement files'

The operations on files are broadly grouped into as follows

Creating a file: To create a file, first space in the file system

must be found for the file.

Writing a file: For writing a file a system call is made

specifying the name of the file and the information to be

written to the file. The operating system searches for the file
entry in the directory. The directory enhy must store a pointer

to the current end of the file. Using this pointer, address of the

next block can be computed and the information can be

written.

Reading a file: To read from a file a system call specifies the

name of the file, again the operating system searches the

directory for the named file and the directory also needs to

have a read pointer pointing to the next block to be read'

In general, a file is either being read or written. Thus instead

of having 2 pointer read pointer and write pointer, most

systems have only one pointer called the current file pointer.

Rewind a file: Rewinding a file need not involve any actual

VO. Rather the directory is searched for appropriate entry and

the current file position is simply reset to the beginning of the

file.

Delete the file: To delete a file, we search the directory for the named file. If found the

directory entry, it releases all file space and invalidate the directory entry.

t.

)

3.

4.

f,.

6.

7.

8.

9.

iiiiitriiliiliii

Truneating a file: The user may want to erase the contents of a file but keep its attributes
rather than facing the user to delete the file and then recreating it, we can truncate the file
which maintains the athibutes of the file but resets the length to zero.

File Pointer: The system must track the last read write location as a curent file portion
pointer. Thus pointer is unique to each process operating on the file and therefore must be kept
separate from the disk file attributes.

Access rights: Each process opens a file in the access mode. This information is stored on the
pre-process table so the operating system can allow or deny subsequent VO requests.

Desk location of the File: Most file operation requires the system to modify data within the
file. The information needed to locate the file on disk is kept in memory to avoid having to
read it from disk for each operation.

2. Access Methods

There are several ways in which information stored in a file can be accessed, which are as follows:

2.1 Sequential Access

Most of the operations on a file are reads and writes. A read operation reads the next portion of the

file and automatically advances a file pointer. Similarly a write operation appends to the end of the

file and advances a file pointer to the end of the newly written data. Such a file can be rewound, and

on some systems, a program may be able to skip forward or backward n records. This scheme is

known as sequential access to a file. Sequential access is based upon a tape model of a file.

Ri*g OfdFlftan t+ir

r------T--------r
r________]-________t
(_]ibthd____+*%'*
Figure 8.1: Sequential access files

2,2 Direct Access

Direct access is based on disk model of a file. For a direct access, the file is viewed as a numbered
sequence ofblock or records. A block is generally a fixed-length quantity defined by the operating
system.

A direct access file allows arbitrary blocks to be read or written. Thus we may read block 54 then
read block 20 then write to block 8. There is no restriction on the order of readine or writins for a
direct access file.

Direct access files are of great use for immediate access to large amounts of information.

The file operations must be modified to include the block number as the parameter. Thus we have
'read n' where n is the block number rather than 'read next' and 'write n' rather than 'write next'.

The block number.provided by the user to the operating system is normally a relative block number.
A relative block number is an index relative to the beginning of the file. Thus the first relative block
of a file is 0. The next is 1 and so on even thoueh the actual absolute addresses of the block mav be
1078 etc.

The use of relative block numbers allows the operating system to decide where the file should be
placed in the memory.

ffiKr Ekt

t---t
t_____l
FE=z

Figure 8.2: Direct access file

Differentiate between Sequential Access and Direct
Access

iii,i.ii;: :,:,!.'i:i:'.'.''.'iii;riftifsdtiiQd t.l+

In this type of file a fixed format is used for records.
In this type of file, it is viewed as a number
of sequential blocks of records.

All records are of same length, consisting of the same
number of fixed lenoth fields in a particular order.

A block is generally of fixed length quantity
defined bv an operatinq svstem.

Usually, first field in each record is referred to as the
kev field. The kev field uniquelv identifies the record.

A direct access file allows arbitrarv blocks
to be read or written.

In this method information in the file is processed in
order. one record after the other.

There is no reslrictions on the order of
readino or writinq for a direct access file.

In this type of file, a fixed format is used for records. The block number provided by the user to
the operating system is normally a relative
block number and is of valuable lenoth.

Absence of data structure.
Data structure is required for storing the
data.

Automatic backup copv is created. Automatic backuo coov is not createcl.

2,3 Other Access Methods

Other access methods can be built on top of a direct access method. These methods generally

involve the construction of an index for the file. The index contains pointers to the various blocks.

To find a record in a file, we first search the index and then use the pointer to access the file directly

and to find the desired record.

With large files, the index file itself may become too large to be kept in memory. One solution is to

create an index for the index file. The primary index file would contain pointers to the secondary

index files which would point to the actual data items.

3. File/Directory Structure

The file systems of a computer can be huge, to manage all the data,

we need to organize it. This organization is usually done in two

parts. First, the disks are split into one or more partitions also called

volumes.

A single disk can be partitioned and each partition is treated as a separate storage area or sometimes

the partitions are larger than the disk size i.e. more than one disks corhprise a single partition. The

user needs to be concemed only with the logical directory and file structure and can completely

ignore the problems of physically allocating space for files. So partitions can be thoirght of as virtual

disks. Partitions can also store multiple operating system, allowing a system to boot and run more

than one operating systems.

Second, each partition contains the information about the file within it. This information is kept in a

device directory or volume table of contents which is normally called only 'directory' (figure 8.3).

+i'[lt'liitxi.&#is,ffiffi

,"nn,"" O

{

,"nU"",

{

Directory

Directory Padition C

Directory

Disk 1

Disk 2

Disk 3

Figure 8.3: A typical file system organization -

The directory records information such as name, location, size and type for all files on the device.

Many different types of directory structures have been proposed. But before seeing for structures we
have to keep in mind the operations that are to be performed on a directory.
o Search: We need to be able to search the directory to find the entry for a particular file.
o create file: New files need to be created and added to the directory.
o Delete file: When a file is no longer needed, we want to remove it from the directory.
o L.ist directory: We need to be able to list the files in a directory and the contents of the

directory entry for each file in the list.

o Backup: For reliability generally backup is taken at regular intervals. This often consists of
copying all files to magnetic tape.

3.1 Single Level Directory

This is the simplest directory structure. All files are contained in the same directory.

A single level directory structure results in a file system tree with two levels: the single root
directory and (all) the files in this directory. That is, there is one level of directories and another level
of files so the full file system tree has two levels.

()n carly personal computers, this system was common, in part because there was only one user. The
world's first supercomputer, the CDC 6600, also had only a single directory for all files, even though
it wirs used by many users at once.

A single-level directory has significant limitations, when the number of files increases or when the
system has more than one user.

Since all files are in the same directory, they must have unique names. If two users call their data file
test, then the unique-name rule is violated.

Even a single user on a singleJevel directory may find it difficult
files as the number of files increases.

to remember the names of all the

Directory

Figure 8.4: Single level directory

Disadvantages

i. It has significant limitations as the number of files increases.

ii. It becomes more and more diffrcult to store all the files in the same directory.

iii. Since each file should have a unique name and if number of users of the system is more, many
users tend to create files with the same names.

3.2 Two Level Directory

The major disadvantage of a single level directory is the confusion of file names between different
users. The solution is to create separate directory for each user.

In a two level directory, each user has his own User File Directory OFD). Each user directory has a
similar structure but lists the files of a single user.

When a user logs in, the systems Master File Directory (MFD) is searched.

When a user refers to a file, only their own directory is searched. Thus different users may have files
with the same name, as long as all files within each user, file directories are unique.

Files

ffirxl$xlpft i*is**il t**:

Master file
directory

User
direclories

Files

Figure 8.5: Two level directory structure

There are still problems with the two level directories. The structure isolates one user from another.
This is advantageous if the users are completely independent but a disadvantage is that if the users
want to cooperate and access files ofother users.

Some systems allow such access but the complete path of the file has to be specified.

For example.' If user 1 wants to access the test file of user 3 he has to specify the path as /user3/test.

3.3 Tree Structure Directories

This generalization allows users to create their own sub-directory and to organize their files
accordingly.

l-l - Directory

Q - rite

Figure 8.6

ri*ifrili#k-1s,Sffi

Path name can be of two types

i. R -+ D: An absolute path name begins at the root and follows a path down to the specified
file, giving the directory names on the path.

ii. D: Relative path name defines a path from the current directory.

3.4 Acyclic Graph Directories

Suppose the users of the operating system needs to share a common subdirectory or files, tree
structured approach wont work.

An acyclic graph allows directories to have shared subdirectories and files. The same file or
sub-directory may be in two different directories. An acyclic graph is a natural generalization of the
tree structured directory scheme. In UNIX this directory structure is used.

Advantage of this directory structure is that it is more flexible and allows sharing of files
efficiently.

Drawbacks of this structure can be

i. Entry file system traversal is difficult.

ii. Deletion of file requires extra care such as link count taken in Unix operating system.

ffi

f-,ilr,yeteIh

File Allocation Methods

The direct access nature of disks allows us flexibility in the implementation of files. ln most cases,
many files will be stored on the same disk. The main problem is how to allocate space to these files.
so that, disk space is utilized effectively and files can be accessed quickly.

Three major methods of allocating disk space are:

1. ContiguousAllocation
2. Linked

3. Indexed

4.1 Gontiguous Allocation

The contiguous allocation method requires each file to occupy a set of contiguous blocks on the disk.
Disk addresses define linear orderine on the disk.

Accessing a file that has been allocated contiguously
allocation is finding space for a new file. However
fragmentation.

Directory

File Start Length

Count 0 2
xYz73

Figure 8.8

ls

it
easy. One difficuhy with contiguous
suffers from the problem of external

EAtrtrE
trtrEEE
@mEz@83

MEEN@E@

4.2 Linked Allocation

Directory

File Start End

xYz 55 I

Figure 8.9

Linked allocation solves all problems of contiguous allocation. With linked allocation each file is a
linked list of disk blocks, the disk blocks may be scattered anywhere on the disk. The directory
contains the pointer to the first and last blocks of the file.

i. The major problem is that it cannot be used effectively for random access filec

ii. Another disadvantage is the space required by the pointer. Yet another problem is reliability.

4.3 lndexed Allocation

Linked allocation solves the external fragmentation and size declaration problem of contiguous

allocation. However, in the absence of FAT, linked allocation cannot support efficient direct access.

Since the pointer to the blocks are scattered with the blocks themselves all over the disk and need to

be retrieved in order indexed allocation solves this problems by bringing all the pointers together in
one location: the index block.

trtiltrtrtr
trEtrtr
E0m@mE

@@@E

EMtrtrE
trEEEtr

E@@@

Figure 8.10

Each file has its own index block which is an array of desk block addresses. The ift entry in the index
block points to the i'h block of file. The directory contains the address of the index block as shown in
abovefigure.

5. File System Structure

Disk provide the bulk of secondary storage on which a file system is maintained. They have two
characteristics that make them a convenient medium for storing multiple files.

i. They can be rewritten in place, it is possible to read a block from the disk to modifv the block
and to write it back into the same place.

ii. They can access directly any given block of information on the disk. It is simple to access any
file either sequentially or randomly and switching from one file to anothir requires only
moving the read-write heads and waiting for the disk to rotate.

Rather than transferring a byte at a time, to improve VO efficiency,l/O transfers are performed in
units of blocks. Each block is one or more sectors. The operating iystem imposes one or more file
systems to allow data to be stored, located and retrieved easily. The file ryrt"- itself is generally
composed of many different levels. The structure shown infigure S.If i; an example oiluy"r"i
design. Each level in the design uses the features of lower levels to create new features for uie bv
hieher levels.

0

|n

0 g ra

y s te

1rI](

s te I1

0l

pr

s

np

I

0
rle I

Iv
3 lr0)n

ys

lro

3lr0r

I

v
e sy

I

v
onlr

Iv
/ ic e s

file r

I

v
c0n

I
Iv

e v ic

f

l

rl

c

al

ni,

cf

0

De

tc

tc

ta

Applic

Logi

F ile o rg

B as

le

Sms

ln

du

IIl

Figure 8.11: Layered file system

The lowest level, the VO control, consists of device drivers and intemrpts handlers to transfer
information between the main memory and the disk system.

The basic file system needs only to issue generic commands to the appropriate device driver to read
and write physical block on the disk. Each physical block is identified by its numeric disk address
(for example.' drive 1, cylinder 43, etc.)

The file organization module knows about the files and their logical blocks as well as physical
blocks. The frle organization module translates logical block addresses to physical block addresses.

The logical file system manages Metadata information. Metadata includes all of the file system
structure, excluding the actual data or contents of the file. The logical file system manages the
directory structure to provide the file organization module with the needed information. It maintains
the file structure using file control blocks. The File Control Blocks (FCB) contains information about
the file including ownership, permissions and location of the file contents.

6. Free Space Management

Files are created and deleted frequently during the operation of a computer system. We have to reuse

the space from deleted files for new files. To keep track of free disk space, the file system maintains
a free space list.

rtrt?$lltjif.iriliii

The free space list records all disk blocks which are free (i.e. not allowed to a file). To create a file,
we search the free list for the required amount of space and allocate into the new file. This space is

then removed from the free space list. When a file is deleted, its disk space is added to the free space list.

6.1 Bit Vector

The free space list may be complemented in many different ways.
One implementation is a bit map or bit vector. Each block is
represented by one bit. If the block is free, the bit is 0 if the block is
allocated. the bit is 1.

Example of the bit vector is
0010110010110

Then the block is 0, 1, 3, 6, 7, 9 are free.

6.2 Linked List

Another approach is to link all the free blocks together keepitrg a pointer to the first free block. This
block contains a pointer to the next free block and so on.

Figure 8.12: Linked free space list on disk

nnnnnnnn
nnnn
nnnn

6.3 Grouping

It stores the addresses of n free blocks in the first block. The first n - I of these are actually free. The
last one is the disk address ofanother block containing the addresses ofanother n free blocks. Here
the advantage is that addresses ofa large number offree blocks can be found quickly.

6.4 Gounting

Another approach is to take advantage of the fact that generally several contiguous blocks may be
allocated or freed simultaneously. Thus rather than keeping a list of a free disk addresses we can
keep the address of the first free block and the number or of the free contiguous blocks which follow it.
Each entry requires more space than a simple disk address as it consists of a disk address and a
count. but the overall list will be sheltered.

SUnaMARY
. File is a named collection of related information defined by its creator.
r File attributes are: name identifier, type, location, size, protection, time, date and user identification.
o File operations: Create, unite, read, reposition (rewind), delete, truncate, open, close.
. There are three access methods:

a. Sequential access method

b. Direct access method

c. Other access methods

. There are five types of directory structures viz:

a. Single level directory b. Two level directory

c. Tree structure directory d. Acyclic graph directory
r Desk provides the block of secondary storage on which a file system is maintained.
o An important issue for an operating system while creating files is how to allocate space to these files.

There are different file allocation methods such as:

a. Contiguous allocation b. Linked allocation

c. Indexed allocation

. The free space list records of all disk blocks which are free.

The various free space management techniques are:
a. Bit vector b. Linked list
c. Grouping d.

ru

W PU ouestions
lAor.15.Oct.14- 2Ml

lApr.2015 - 2Ml

@d.2afl- 2Ml

tOct.201'l - 2Ml

1Apr.2011 - 2Ml

lOct.2015- 4Ml

1OcI.2014- 4Ml

IApr.2013 - 4Ml

tOct.2012- 4Ml

lOct.2012- 4Ml

lAor.2012- 4Ml

IAor.2012- 4Ml

IOct.2011 - 4Ml

tOct.11. Apr.11 - 4Ml

lOct.11. Aor.11 - 4Ml

IApr.2011- 4Ml

1.

2.

4.

5.

Define file.

List Basic operations on file.

List any four file Attributes.

List various Operations on Files.

What is a File? List anv two attributes of a file.

1. List and explain any two operations that can be performed on file.

2. List and explain different attributes related to file.

3. Give the diagrammatic representation of Single Level Directory.

Also list out the disadvantages of Single Level Directory
Structure.

4. Discuss various techniques of Free Space Management in File
' System.

5. Define File. Explain the different operations of File.

6. Explain tndexeit Allocation Method in detail.

7. Write short note on Acyclic Graph Directory.

8. Write a short note on File Directories.

9. Differentiate between Sequential Access and Direct Access.

10. What is meant by Free Space Management? Define Bit Vector and

Linked List.

11. Write a short note on Operations on File.

Q,
ursl0ll

llO SYs

1. lntroduction

The two main jobs of a computer are VO and processing. The role of the computer VO is to manage

and control VO operations and VO devices.

The control of devices connected to the computer is a major concern of operating system designers.

The VO devices vary so widely in their function and speed, a variety of methods are needed to
control them. These methods form the VO subsystem of the kernel which separates the rest of the

kernel from the complexity of managing VO devices.

The device drivers present a uniform device access interface to the I/O subsystem, same like the

system calls provide a standard interface between the applications and the Operating System.

2. l/O Hardware

Many errors can occur in the programs written by the programmer, such as an attempt to execute
illegal instruction, or to access memory that is not in the users address space-then hardware will trap

Qlafren q

TEM

to the Operating System. Whenever a program enor occurs, the Operating System must abnormally
terminate the program.

An appropriate error message is given and the memory of the program is dumped. The memory
dumped is usually written to a file so that the user can examine it and perhaps can correct and restart
the program.

3. Application of l/O Interface

Figure 9.1: Kernel l/O structure

The device driver layer is used to hide the differences among device controllers from the VO
subsystem of the kernel making the VO subsystem independent of the hardware, which simplifies the
job of operating system developers. It also benefits the hardware manufacturers. They either design
new devices to be compatible with an existing host controller interface or they write devices to
drivers to interface the new hardware to the operating system.

There may be variations with the devices in
1. Character stream or block: A character stream device transfers bl.tes one bv one whereas a

block device transfers a block by bytes as a unit.

Sharable or dedicated: A sharable device can be used concurrently by several processes or
threads. A dedicated device cannot be used by more than one processes.

Speed of operation: Device speeds range from a few bytes per second to a few giga bytes per
second.

)

3.

Kernel

Kernel llO subsvstem

SCSI
device
driver

Keyboard
device
driver

Mouse
device
driver

PCI bus
device
driver

Floppy
device
driver

ATAPI
device
driver

PCI bus
device

controiler

Floppy
device

controller

ATAPI
device

controller

4.

3.

6.

Read, write, read only or write only: Some devices perform both input and output
operations, but others support only one data direction.

Synchronous or asynchronous: A synchronous device is one that performs data transfers
with predictable response times. An asynchronous device exhibits inegular or unpredictable
response time.

Sequential or random access: A sequential device transfers data in a fixed order determined
by the device, whereas the user of a random access device can instruct the device to seek to
any ofthe available data storage location.

4. Direct Memory Access (DMA)

Direct memory access (DMA) is a method that allows an input/output (VO) device to send oi receive
data directly to or from the main memory, bypassing the CPU to speed up memory operations.
A computer's system resource tools are used for communication between hardware and software.
The four types ofsystem resources are:

VO addresses

I\tlemory addresses

. Intemrpt RequestNumbers (IRQ)

. Direct Memory Access (DMA) channels

DMA channels are used to communicate dal"a between the peripheral device and the system memory.
All four system resources rely on certain lines on a bus.

A DMA channel enables a device to transfer data without exposing the CPU to a work overload.
Without the DMA channels, the CPU copies every piece of data using a peripheral bus from the VO
device. Using a peripheral bus occupies the CPU during the read/write process and does not allow
other work to be performed until the operation is completed.

With DMA, the CPU can process other tasks while data transfer is being performed. The transfer of
data is first initiated by the CPU. During the transfer of data between the DMA channel and VO
device, the CPU performs other tasks. When the data transfer is complete, the CPU receives an
intemrpt request from the DMA confroller.

i.

ii.
iii
iv

Kernel l/O Subsystem

Kernel provides many services related to VO. Several services like
buffering, caching, spooling, device reservation and error handling
are provided by the kernels VO subsystem and built on the hardware

and device driver infrastructure.

5.{ l/O Scheduling

To schedule VO means to determine the order in which to execute the I/O. VO requests are rarely
executed in the order in which they are received. Scheduling can improve overall system
performance and can reduce the average waiting time for VO to complete.

A queue is maintained for all the VO requests of a device. The scheduler then rearranges the order of
processes in the queue to improve the overall system efficiency and the average response time
experienced by application.

5.2 Buffering

A buffer is a memory areathat stores data while they are transfeffed
between two devices. There are various reasons why buffering needs

to be done. One reason is to cope with a speed mismatch between

the producer and consumer of data.

For example.' A file is being transferred to a disk via a modem. The
hard disk is much faster than the modem so to mask this speed
difference, a buffer is created in main memory to accumulate bytes
received from the modem. When an entire buffer of data has arrived
then the buffer is written to disk in a single operation. The second
use of buffering is to adopt between devices that have different data
transfer sizes.

For example: In networking, when fragmentation and reassembly of messages is done. At the
sending side, a large message is fragmented into small network packets and the receiving size places
them in a reassembly buffer to form an image of the source data.

iffiie$$

Another application of buffering is to support copy semantics for application UO. A copy semantics

is that when an application generates a write 0 system call, with a pointer to a buffer that it wishes to
write, then the contents of the buffer are immediately copied to kernel buffers and then the data is

transferred from kernel buffers to the disk. This is done to ensure that even if changes are made to
the buffer by the application, still only those contents that were present in the buffer at the time,
when it made a write O call are written to the disk.

5.3 Gaching

A cache is a region of fast memory that holds copies of data. Access to the cached copy is more
efficient than access to the originaT. For example:The instructions of the currently running process
are stored on disk, cached in physical memory and copied again in the CPU's secondary and primary
caches. The difference between a buffer and a cache is that a buffer may hold the only existing copy
of a data item, where a cache just holds a copy on faster storage of an item that resides elsewhere.

Caching and buffering are distinct functions but sometimes a region of memory can be used for both
the purposes. For example: To preserve copy semantics and to enable efficient scheduling disk I/O,
the operating system uses buffers in main memory to hold disk data. These buffers are also used as a

cache to improve the VO efficiency for files that are shared by applications, that are being written
and re-read rapidly.

5.4 Spooling and Device Reservation

A spool is a buffer that holds output for a device such as a printer, that cannot accept interleaved data
stream. For example: The printer can print only one job at a time, but more than one applications
may want to print concurrently at the same time, but the output should not be mixed together. The
operating system solves this problem by intercepting all output to the printer. Each applications
output is spooled to a separate disk file and the spooling system maintains a queue of such spooled
file. When the printer finishes the job it is doing, the spooling system assigns the next job from the
queue to the printer. The operating system provides a control interface that enables users and system
administrator to view the queue, to remove unwanted jobs before they are printed and to suspend
printing while the printer is serviced.

Some devices such as tape drives cannot usefully multiplex the I/O requests of multiple concurrent
applications. Here the way to deal with concurrent device access is to provide explicit facilities for
co-ordination. Some systems provide support for exclusive device access by enabling a process to
allocate an idle device and to deallocate that device when it is no loneer needed.

tfiii#'d$hffiffi$ir*#sl

5.5 Error Handling

An operating system that uses protected memory can guard against many kinds of hardware and
application errols, so complete system failure is not the usual result of any minor problem. Devices
and VO transfer can fail in many ways, either for transient reasons. Such as network becoming over
loaded as for permanent reasons, such as disk controller becoming defective. Operating system can
often effectively compensate for transient failures. For example: iead Q failure results in a read 0
retry and a network send Q failure results in a resend 0. But if an important component experiences a
permanent failure then the operating System is unlikely to recover.

Generally an VO system call will return 1 bit information about the status of the call, signi1,ing
either success or failure. Some systems use addition bits to give more detailed information of the
effor occutred, type of error, etc.

5,6 Kernel Data Structures

The kernel needs to keep state information about the use of VO components. It does so through a
variety of in-kernel data structure, such as the open file table structure and other such structures that
the kernel uses to track network connections, character device communications and other VO
activities.

Some operating system use object oriented methods. For example: Windows NT uses a message
passing implementation for VO. An VO request is converted into a message that is sent through tie
kernel to the I/O manager and then to the device drive, each of which

-may
change the message

contents. For ou@ut the message contains the data to be written, for input the .Irrug. contains
buffer to receive the data. The message passing approach can add overhead, but it simplifies the
structure and design of the VO system and adds flexibility.
The I/o subsystem co-ordinates and supervises a lot of activities like:
o Management of name space for files and devices
o Access control to files and devices
o Operation control
r File system space allocation
o Device allocation
e Buffering, caching and spooling
c UO scheduling
o Device status monitoring, error handling and failure recovery
. Device driver configuration and initialization

iftfs#

5.7 l/O Protection

To prevent user from performing illegal I/O. we define all VO instructor to be privileged
instructions. Thus, users cannot issue VO instructions directly, they must do it through Operating
System. To do llO, a user program executes a system call to request that the operating system
perform VO on its behalf.

The operating system executing in monitor mode checks that the request is valid and if it is, does the
VO requested, the operating system then returns to the user.

In addition, any memory mapped andVO port memory locations must be protected from user access
by the memory protection system.

5.8 Memory Protection

Memory protection is provided by using two registers, usually a base and a limit. The base register
holds the smallest legal physical memory address the limit register contains size of the range.

Thus protection is accomplished by the CPU hardware comparing every address genprated in user
mode with the registers. Any attempt by a program executing in user mode to access monitor
memory or other users memory results in a trap to the monitor, which treats the attempt as a fatal
erTor.

5.9 CPU Protection

We must prevent a user program from getting stuck into an infinite loop and never return in control
to the operating system to achieve this we can use a timer. A timer can be set to intemrpt the
computer after a specified period.

6. Dual Mode Operation

To ensure proper operation, we must protect the operating system and all other programs and their
data from any malfunctioning program.

Wffi fiil..itiiffi$,..{jfi iiff ifi if.sgrii

For this pulpose there are two separate modes of operation

i. User mode

ii. Monitor mode (supervision system / privileged mode)

A bit called the mode bit is added to the hardware of the computer to indicate the current mode:
Monitor (0) or user (1).

At system boot time the hardware starts in monitor mode. The operating system is then loaded an,it
starts user processes in user mode. Whenever a trap or intemrpt occurs, the hardware switches from
user mode to the monitor mode.

Some of the instructions are designed to the privileged instructions that may cause harm. The
hardware allows the privileged instructions to be executed in only monitor mode.

7. Disk Scheduling

File systems must be accessed in an efficient manner as the
computer deals with multiple processes over a period of time, a list
ofrequest to access the disk builds up. The operating system uses a
disk scheduling technique to determine which requesitosatisfu.

The disk access time has two major components

1. The seek time: It is the time for the disk arm to move the
heads to the cylinder containing the desired sector.

2. Rotational latency: It is the additional time waiting for the
disk to rotate the desired sector to the disk head.

Whenever a process needs VO to / from the disk, it issues a system call to the operating systemif the derived disk drives and controllers are available, the request can be serviced
immediately' If the drive or controller is busy, any new requests for service will need to be
placed on the queue ofpending requests for that drive.

For a multiprogramming system with many processes, the disk queue mfy often have several
pending requests. Thus, when one request is completed, the operating system has an
opporhrnity to choose which pending requests to service next. The part of the operating system
which makes this decision is called disk scheduler.

Disk scheduling techniques are:

ii. SSTF (Shortest Time Seek First)

7.1 FGFS Scheduling

This algorithm is intrinsically fair, but it generally does not provide the fastest service.

Example: Disk queue with requests for VO to block on cylinders 98, 183, 37 , 122, 14, 124,65, 67

If the disk head is initially at cylinder 53 calculate the total head movement using FCFS scheduling
for the cylinder range from 0-199

o 14 37 53 65 67 98 122 124 183 199

Figure 9.2

Total head movement = 153 - 981+ 198 - 1831+ 1183 *371+ 137 -1221

+ lr22- 141 + lr4 - r24l + lr24- 651 + l6s - 671

: 45 1 85 + 146 + 85 + 108 + 110 + 59 + 2

:640 cylinders

7.2 Shortest Seek Time First (SSTF) Scheduling

This algorithm selects the request with the minimum seek time from the current head position. Since
seek time increases with the number of cylinders traversed by the head, SSTF chooses the pending
request closest to the current head position. SSTF scheduling like 'SJF', it may cause starvation.

37 53 65 67 122 124 183 199

-*--+q

/.<----'->r/
-. _*___.._-_

-*---.->. _____*.
___+. *_$.

Figure 9.3

Total head movement : 153 - 651 + 165 - 671+ 167 - 371+ 137 - t4l

+ lr4 -esl + le8 - r22l + lr22 _ r24l + | r24_ 1831

: 12 + 2 + 30 + 23 + 84 + 24 + 2 + 59

:236

7.3 Scan Scheduling

In this algorithm the disk arm starts at one end of the disk and moves towards the other end of the
disk, servicing requests as it reaches each cylinder, until it gets to the other end ofthe disk. At the
other end, the direction of head movement is reversed, and servicing continues. The head
continuously scans back and forth across the disk. This algorithm is sometimes called the Elevator
Algorithm' Since the disk arm behaves first like an elevator in a building, first servicing all the
request going up and then reversing to service requests the other way.

14

ffi
0 14 37 53 65 67 98 122 124 183 199

'>.
Figure 9.4

Total head movement : 153 - 371 + 137 - l4l +
| 14 - 0l + l0 * 651 + 165 - 671

+167 - 981+ 198 -1221+1122-1241+1124- 1831

= 16 * 23 + 14+ 65 + 2 + 3l + 24 + 2 + 59

:236

7.4 G Scan (Gircular Scan)

It is a variant of scan that is designed to provide a more uniform wait time. Like scan, C scan moves
the head from one end of the disk to the other, servicing requests along the way. When the head
reaches the other end, however, it immediately retums to the beginning of the disks without securing
any requests on the return trip.

ii{l$}i$ili{friii

124 183 199

Figure 9.5

Total headmovement:153 -651+ 165 -671+167 -9gl+ l9g - l2zl+1122-t241

+1124- 1831+1183- t99l +1199 _01+10 _r4l+lL4_371

: t2 + 2 + 3l + 24 + 2 + 59+ 16 + I99 + 14 + 23

= 382

7.5 Look and G Look Scheduling

Both scan and C scan move the disk arm across the full width of the disk. In practice, neither
algorithm is implemented this way. More commonly, the arm goes only as far as the final request in
each direction then, it reverses direction immediately, without first going all the way to the end of
the disk. These versions of scan and C - Scan are called Look and C- Scan, because the looks for a
request before continuing to more in a given direction.

12298

lfii$,y

a 14 37 53 65 67 98 122 124 183 199

Figure 9.6

Total head movement : 153 - 651 + 165 - 671+ 167 - 981+ 198 - l22l

+ lt22 - r24l+ lr24 - l83l + ll83 - r4l+ lr4 -371

:12+2+31+24+2+59 + l6+ 169+23

= 322 cylinders.

8. Polling

The protocol for handshaking between the host and controller is simple/or example: we assume that
2 bits are used to co-ordinate the producer consumer relationship between the controller and the host.

The controller indicates its state through the'busy'bit in the status register to 1. The controller sets

the busy bit when it is busy working and clears the busy bit when it is ready to accept the next
command.

The host signals its wishes via the command ready bit in the command register. The host sets the

command ready bit when a command is available for the controller to execute.

For example: The host writes the O/P through a port, coordinating with the controller by
handshaking as follows:

i. The host repeatedly reads the busy bit until that bit becomes clear,

ii. The host sets the wdte bit in the command register and writes a byte into the data-out register.

iii. The host sets the command ready bit.

iv. When the controller notices that the command readv bit is set. it sets the busv bit.

ffim*frffi#*iiffiffiltr+H

v' The controller reads the command register and sees the 'write' command. It reads the data-out
register to get the byte and does the VO to the device.

vi' The controller clears the command ready bit, clears the error bit in the status register toindicate that the device' Vo succeeded and clears the busy bit to indicate that it is finished.

This loop is repeated for each byte. In step 1, the host is busy waiting or polling. Here it keeps
reading the status register over and over until the busy bit becomes clear. If the wait is short, this
method is a reasonable one, but if the wait is long, then the host should probably switch to another
task.

But then how does the host know when the conholler has become idle? For this we could arrange for
the hardware controller to notify the CPU when the device becomes ready for service, rather than to
require the CPU to poll repeatedly for an VO completion. This hardware mechanism that enables a
device to notift the CpU is called an intemrpt

L lnterrupts

Intemrpts are very important in o.s. most peripherar devices
generate intemrpts inorder to receive service from the operating
system. Intemrpts are the principle method of initiating servicing
actions by the operating system. The intemrpt signal causes the cpu
to stop what it is doing and turns its attention to something erse.

The basic internpt mechanism worl<s as follows:
The CPU hardware has a wire called the intemrpt request line that the cpU senses after executingevery instruction' When the CPU detects that a controller has sent a signal on the interrupr requestline' The CPU saves its current state and jumps to the intemrpt handler routine at a fixed address inmemory.

Thus handler determines the cause of the intemrpt, performs the necessary processing and executes areturn from intemrpt instruction to the CPU exeiution state prior to the inienup t.
o

we say that the controller raises an intemrpt, CPU catches the intemrpt and dispatches it to theintemrpt handler. The handler clears the intemrpt by servicing the device'(frgure i.i.

l/O controller

Figure 9.7: Interrupt driven l/O cycle

ln modern operating system, we need more sophisticated intemrpt handling features. We need ability
to differ intemrpt handling during critical processing, also an efficient way to dispatch to the proper

intemrpt handler. For a device, without first polling all the devices to see which one raised the

intemrpt and we need multilevel intemrpts so that the operating system can distinguish between high
and low priority intemrpts and can respond with the appropriate degree of urgency.

Most CPU's have' two intemrpt request lines. One is the
non-maskable interrupt which is reserved for events such as

unrecoverable memory errors. The second intemrpt line is
maskable. It can be furned off by the CPU before the execution of
critical instruction sequences that must not be interrupted.

The intemrpt mechanism accepts an address which selects the

specific intemrpt handling routine from a small set. This address is

an offset in a table called the intemrpt vector.

lnput ready, output
complete or error generates

interrupt signal

CPU receiving interrupts,
transfers control to

interrupt handler

CPU resumes
processing

of interrupted task

iiiii$iiltitirifi

Table 9'l shows a typical intemrpt vector but in many systems there are more intemrpt handler than
the address in the intemrpt vector so chaining is done where each element in the vector points to the
head of a list of intemrpt handlers. When an intemrpt is raised, the handlers on the list are called one
by one until the one is found which can service the request.

The intemrpt mechanism also implements a system of intemrpt priority levels.

Table 9.1: Event vector table

ililiil:iiiiriitj

0 Divide error
1 Debug exception
2 Null interrupt
3 Break point

4 INTO detected overflow
A Bound range exception
o lnvalid opcode
7 Device not available
8 Double fault
I Co-process segment over run
10 Invalid task state segment
11 Segment not present

12 Stack full
13 Generate protection

14 Page fault
15 (Reserved, do not use)
16 Floating point error
17 Alignment check
18 Machine check

19-31 (Reserved, do not use)
32-255 Maskable interrupts

The intemrpt mechanism is also used to handle a wide variety of exceptions, such as dividing by
zero' accessing a protected or non-existent memory address or attempting to execute a privileged
instruction from user mode.

Solved Examples

l. Assume there are total 200 tracks that are present on each
surface of the disk. If request queue is 68, 92, 16, ggo 160,
128,158, 106 and initiat position of the head is 35. Apply
SCAN Disk Scheduling Atgorithm and calculate total head
movement.

ritriiffiieglffi

Solution

Given

Request Queue

68,92, l6, gg,160,129,159, 106

0 16 35 68 88 92 106 128 158 160

Arm movements

: (3s - 16) + (68 - 16) + (88 - 68) + (92 - 88) + (106 - 92) + (128 - 106) + (158 - 128)
+ (160 - ls8)

: l9+ 52+20 +04+ 14+22+30+02
: 163

2. Assume there are total200 tracks that are present on each
surface of the disk. If request queue is 70, 120, 10 180, 900

50, 100 and initial position of the head is 105. Appty FCFS
Disk Scheduling Algorithm and calculate total head
movement.

Solution

Given

Total tracks:200

Request queue: 70,120,10 180, 90, 50, 100.

Initial position of head is 105.

0 20 30 60 100 105 12A MO fio 190 200

I
I
I

I
I

Total movement

= (105 - 70) + (120 - 70) + (r20- 10) + (180 - 90) + (100 - s0)

:35+50+110+99159
:335

3. Assume there are total 200 tracks that are present on each
surface of the disk. If request queue is 30, 140, 20 1701 60,
190 and initial position of the head is 120. Apply FCFS
Disk Scheduling and calculate total head movement.

Solution

Given: Totaltracks:200

Request queue: 30,140,20,170,60, 190. Initial position of head is 120.

FCFs Disk Scheduling

02030 60 100 124 140 170 190 2AA

Total movement
(120-30)+(140

: 90+ 110+ 120+
710

- 30) + (140 - 20) + (r70 -20) + (170 -60) + (190 - 60)
150+ 110+ 130

t

a

a

SUMMARY
The two main jobs of a computer are l/O and processing.
To ensure proper operation we must protect the O.S and all other programs and their data from any
malfunctioning program. For this purpose there are two separate modes of operation.
a. User mode b. Monitor mode

Seek time: lt is the time for the disk arm to move the heads to the cylinder containing the desired sector.
Rotational latency: lt is the additional time waiting for the disk to rotate the desired sector to the disk
head.
Disk Scheduler: For a multiprogramming system with many processes, the dlsk queue may often have
several pending requests. Thus when one request is completed the operating system has an opportunity
to choose which pending requests to service next. The part of the operating system which makes thii
decision is called Disk Scheduler.
There are various disk scheduling algorithm like:
a. First Come First Serve Scheduling (FCFS)
b. Shortest Seek Time First Scheduting (SSTF)
c. Scan scheduling
d. C-Scan scheduling
e. Look and C-Look scheduling
A spool is a buffer that holds output for a device such as a printer, that cannot accept interleaved data
stream.
A cache is a region of fast memory that holds copies of data access to the cached copy is more efficient
than access to the original.
A buffer is a memory area that stores data while they are transferred between two devices.

W PU ouestion$

Define the term Interrupt.

Explain Block and character devices.

Explain Buffering in detail.

What is Buffering?

What do you mean by Seek Time in Disk Scheduling?

What is meant by Disk Scheduling?

l.

2.

3.

4.

5.

6.

IOct.l5.Aor.13 - 2Ml

lOct.2014 - 2M1

lOct.2014 - 2Ml

lOct.2012 - 2Ml

lOct.2011- 2Ml

lAor.2011 - 2hrtl

i

lOct.2015 - 4Ml

IOct.2015 - 4Ml

lOct.2015- 4Ml

lOct.2015 - 4Ml

IApr.2MS - aMl

IAor.2015 - 4Ml

lOct.20'14- 4Ml

lOct.2014- 4Ml

lOct.2014- 4Ml

lAor.20'|.3 - 4hrfl

lApr.2013 - 4Ml

lApr.2013 - 4Ml

1Oct.2012- 4Ml

1Aor.2012- 4Ml

lApr.2012- 4Ml

i{&i$ystem

1. Explain client-server system in detail.
2. Write a short note on Direct Memory Access (DMA).
3. Write a short note on Buffering.
4. The request queue is as follows :28, 736, 1 5, 1 85, 50, 797 .

Number of tracks:0 to 199.

Starting position or current head position= 134
Find total head movement by Applying FCFS (First Come First
Serve) disk scheduling algorithm.

5. Explain Direct Access method with advantages and

disadvantages
6. The request queue is as follows:

87 , 148, 92, 17 | , 96, 131 , 103, 7 r

Number of tracks : 0 to 199.

Starting position or cuffent head position: 725

Find total head movement by Applying SSTF (Shortest seek

time first) disk scheduling Algorithm.
Explain intemrpt in detail.
Assume there are total 200 tracks that are present on each

surface of the disk. If request queue is 86, I47, 9 1, 17 0, 95, 130,
102, 70 And initial position of the head is 125 Apply C-look.
Disk scheduling Algorithm and calculate total head movement.
Explain Buffering in detail.
Explain in brief different services provided by Kemel related to VO.

Assume there are total 200 tracks that are present on each

surface of the disk. If request queue is 68, 92, 76, 88, 160,

128,158, 106 and initial position of the head is 35. Apply SCAN
Disk Scheduling Algorithm and calculate total head movement.

What is polling and how it is achieved to control more than one

device?
Assume there are total 200 tracks that are present on each

surface ofthe disk. Ifrequest queue is 70,120,10 180, 90, 50,

100 and initial position of the head is 105. Apply FCFS Disk
Scheduling Algorithm and calculate total head movement.
What do you mean by Maskable and Non-maskable Intemrpt?
Assume there are total 200 tracks that are present on each

surface ofthe disk. Ifrequest queue is 30, 140, 20 170,60, 190

and initial position of the head is 120. Apply FCFS Disk
Scheduling and calculate total head movement.

j

1

I
I
{

9.
10.

11.

4

8.

t2.

IJ.

14,
15.

()"
urSt0tl

Suggestive Readings:

1. Andrew M. Lister, Fundamentals of Operating Systems,

2. Wiley. Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and

Implementation, Prentice Hall.

3. Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

4. Colin Ritchie, Operating Systems, BPB Publications.

5. Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

6. I.A. Dhotre, Operating System, Technical Publications.

7. Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

8. Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,

Seventh Edition.

9. Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

10. File systems: design & implementation by Daniel Grosshans

11. Practical File System Design with the Be File System By Dominic Giampaolo Be,

Inc.

	0f9b7dbe00426973ffd7f3541e6a8bdff006c5e5b733baa8a75de2fc3c98939b.pdf
	8676a7db12527eb51372efe3c09bc57863fe8e0fc96455d038de543e36c85552.pdf
	e03d419c7fced62e82f13b85f69f9fe1e9abcd6dc5a9b3493055b45bd8bd6cbf.pdf
	8da516b32d69f5785bbf49d3527258d2ea65eea805163f2c479587d2de23e351.pdf
	Microsoft Word - Introduction to Operating System BCA SEM-3

