SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

Introduction to Operating System
Semester-111
Author- Harshita V. Vachhani

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Syllabus
Introduction to Operating System

Learning Objective

- To explain main components of OS and their working

- To familiarize the operations performed by OS as a resource Manager

- To impart various scheduling policies of OS To teach the different memory management
techniques.

UNIT I

OPERATING SYSTEMS OVERVIEW: Introduction, operating system operations, process
management, memory management, storage management, protection and security, distributed
systems. OPERATING SYSTEMS STRUCTURES: Operating system services and systems calls,
system programs, operating system structure, operating systems generations.

UNIT NI

PROCESS MANAGEMENT: Process concepts, process state, process control block, scheduling
queues, process scheduling, multithreaded programming, threads in UNIX, comparison of UNIX
and windows. CONCURRENCY AND SYNCHRONIZATION: Process synchronization, critical
section problem, Peterson’s solution, synchronization hardware, semaphores, classic problems of
synchronization, readers and writers problem, dining philosophers problem, monitors,
synchronization examples (Solaris), atomic transactions. Comparison of UNIX and windows.

UNIT - 1l

DEADLOCKS: System model, deadlock characterization, deadlock prevention, detection and
avoidance, recovery from deadlock banker’s algorithm. MEMORY MANAGEMENT: Swapping,
contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory,
demand paging, page-replacement algorithms, allocation of frames, thrashing, case study - UNIX.

UNIT IV

FILE SYSTEM: Concept of a file, access methods, directory structure, file system mounting, file
sharing, protection. File system implementation: file system structure, file system implementation,
directory implementation, allocation methods, free-space management, efficiency and
performance, comparison of UNIX and windows.

UNIT -V

I/0 SYSTEM: Mass storage structure - overview of mass storage structure, disk structure, disk
attachment, disk scheduling algorithms, swap space management, stable storage implementation,
tertiary storage structure. 1/0: Hardware, application 1/O interface, kernel 1/0O subsystem,
transforming 1/0 requests to hardware operations, streams, performance.

References

- Abraham Silberschatz, Peter Baer Galvin, Greg Gagne (2006), Operating System
Principles, 7th edition, Wiley India Private Limited, New Delhi.

- Stallings (2006), Operating Systems, Internals and Design Principles, 5th edition, Pearson
Education, India.

- Andrew S. Tanenbaum (2007), Modern Operating Systems, 2nd edition, Prentice Hall of
India, India.

- Deitel & Deitel (2008), Operating systems, 3rd edition, Pearson Education, India.

1. Introduction to Operating System 10
1. TPOAUCHION ...ttt sttt eee st e e e e e s es st se bt sesesaeare s estesetesaeeatanssesatanasen
2, Services Provided by OS........ccviiiiiieiiee ettt et e
3. Types of Operating System
3.1 Simple Batch Operating System (Long Term Scheduler) 1-5

3.2 Multiprogram Batch System 1-6
3.3 Time Sharing System (Middle Term Scheduler) 1-7
3.4 Real Time Systems 1-8
3.5 Clustered System 1-8
3.6 Distributed Operating Systems 1-9
2, System Structure 14
1. User Operating System Interface............cccocccovvvreiie i e e sttt e n e s e e e b e aaeaans 2-1
2. SYSBM CallSviiieieit ettt st eee e et b et b e s r st et ae s b e et e re e e tetr et eteatete s ennane 2-3
3. Architecture of COMPULEE SYSBMc..ccceviii ettt e et seneea st sesens et saesea 2-5
3.1 Operating System 2-8
4 Operating SYSTEM STTUCKIUTEcccrirrriireiicctiie ettt eb e ese st s et st a e eaees s e s et st aseasenesseseone 29
4.1 Simple Structure 2-9 4.2 Layered Structure 2-10
4.3 Microkernel Structure 2-11 4.4 Monolithic Structure 2-12
3. Process Management 8
1. PrOCESS CONCEPL.......ioriiiiiiiieieee ettt rte st st et ta et e et ese et eaesber s st e s et ste st eaesees s e easeesebeeeeens et esassennans 31
2. Process State............. e et b e r e bt e e e s e eresaerbesheabebenben 3-2
3. Process CONrOl BIOCKc.c.iuiieieniiieee e tcnectreet s sas s sttt see st et ese b essaest et eresereeseeeeenaesesannanas 3-3
4. Context Switch34
5. OPErations ON PrOCESSEScceiuieriiiieriieccine et erecbas et s et ereesssetsrssmsessasareasesaenesssensseeesessensasssssesserssns 3-4
5.1 Process Creation 3-5 5.2 Process Termination 3-6
6. TYPBS OF PrOCESSES ..ottt sest st s s srs baa e eae s bt s s s s an st es s sttt ee e st st enseeteenananssesareneaes 3-7
7. SIGNAIS ..ottt bbbt et A bbb e s e e st et e et e eeaeeereeerererestrenteraten 3-7
4. CPU Scheduling) 26
1. INPOGUCHION ...t et s e reneens OO PPIORPION 4-1
2. SCEAUNNG CONCEPLScecuieiriirireiririsieeiieseesis st b e s b s s b esss et s beeesse s erenese e s eaeeneneesesansesesssaesesns 4-1
2.1 CPU Scheduler (Short Term Scheduler) 4-3 2.2 CPU I/O Burst Cycle 4-3
2.3 Preemptive and Non-preemptive Scheduling 4-4 2.4 Dispatcher 4-5
3. SChEAUIING CHBMA............ ittt r bt seat s et b sere e st st seesseeeeneaenes st esesenes 4-6
4. SCheduling AIGOTIIMooireireierceec e bt b b s et eenee s er e eseeeeee e e 4-7
4.1 First Come First Serve Scheduling (FCFS) 4-7 4.2 Shortest-Job First Scheduling Algorithm (SJFS) 4-10
4.3 Priority Scheduling Algorithm 4-13 4.4 Round Robin Scheduling Algorithm 4-14
4.5 Multitevel Queues 4-17 4.6 Multi Level Feedback Queues 4-18
5. Operation SYStem EXAMPIEScccccciriiinie ettt s es sttt st st e e s e 4-18
Solved Examples........ e eie e e e oL Lt e E e R e r R 4o bt e a e ek e e e areeeaRe e eab e e e s reeaeaenbeentee erseanetetesshes s reennee st saentenreeatees
5. Process Synchronization
1. INTOGUCHION ..ot bbb e s ae et sttt st e e se s eesrereseaenemseeensetessssansens
2. Interprocess Communication
3. Critical Section Problem
4, SOMAPNOTES ...ttt sttt b s e b bbb ssae b b st s e e et e s et st et e eeaee e e s eeserseareneen
4.1 Usage 5-5 4.2 Implementation 5-6
4.3 Deadlock and Starvation 5-7 4.4 Binary Semaphores 5-7
5. MOMIOS ...ttt s e st ettt s bt eene st st neseesetreneeee st seesesesenseeans 5-8
6. Classical Problems of SYNChIrONMIZAtONccovvriiniiririieirerecct ettt es et sesese e eeesseeas 5-9
6.1 The Bounded Buffer Problem 5-9 6.2 Reaaers and Writers Problem 5-10
6.3 Dining Philosophers Problem 5-12
6. Deadlocks 20
1. INEPOAUCHION ...ttt b ettt s stb e e s e e st seseeeaeeaeeneeeseeneasesesessssesseseeees 6-1
2. SYSIEM MOGE! ..ottt bbbt eeeenr et nesee st ee s s nnan 6-2
3. Deadlock Charactenzatlon ... 6-2
3.1 Necessary Conditions for Deadlock 6-2
4, Resource AOCAtION Graphs..........ccovivriieuii ettt et e e e st sensetsantens .
5. Safe Statecccoceiiriie e
6. DeadiOCK PrEVEONONc..ccoviiriirirre sttt sttt ease ettt e eeeeseaereseeseaeeeseseseassas st st asenesaessssenns
6.1 Just Ignore the Problem all together 6-5 6.2 Deadlock Detection 6-6
6.3 Recovery from Deadlock 6-7 6.4 Deadlock Prevention 6-7

6.5 Deadlock Avoidance By Careful Allocation of Resource6-8

Introduction to OS oje |159g

7.
8.
9.

10. .
SOIVEA EXAMPIBSc.oovviviiiieie ittt sre ettt s er e e et ese s e e aeemeese st eseeh e et e essaseseenseeeaneseenseseeasesesssesesseseeeeeeeenes
7. Memory Management

1.

® Nooks

9.
1

0.

Banker’s Algorithm for a Single Resource
Banker's Algorithm for Multiple Resources
Process Terminationc.c.cceeeceeecvvcrinne

Resource Preemption...........cviiiiieiincneancoenne s ssseesee s

INtroduction ..o, et renn s srrens

1.1 Address Binding 7-1 1.2 Logical Verses Physical Addresses 7-3

1.3 Static Linking 7-4 1.4 Dynamic Loading 7-4

1.5 Dynamic Linking and Shared Libraries 7-5 1.6 Overlays 7-5

SWADDING - ettt ettt r e e e e et s et e e e e s e et sheeba s h bt A st e b e e aR b e st et e eat b eSS ae e st st aeneor e s enenetensaneereneen 7-6
ContiguoUSs MEMOTY AHOCEHONcverrerrieereieisicteirr s s et e essste e aessebeseatessstsstsa e st sr et bessasesessnananene 7-7
3.1 Single Partition Allocation (Monoprogramming without Swapping or Paging) 7-7 '

3.2 Multiprogramming without Swapping or Paging i.e. Multiprogramming with Fixed Partition (MFT) 7-8

3.3 Muitiple Partition Allocation (Multiprogramming with Variable Partitions) (MVT)7-9

3.4 Fragmentation 7-12

Free Space Management TEChNIGUESoiciviriirienececsr sttt r et 7-13
Aliocation Swap of Space.................... "
Virtual Memory (Overiays)
PAGING....ovitiiiiiiircii i e e e st s st et tr b ers st be s eE e st s ae et se s et tatsretene st e anans

7.1 Internal Operation of MMU 7-17

Page Replacement AIGOTIIMS ...t seeeee st sssessssssssnsbesesssesssosssessesesseeneos 7-18
8.1 FIFO Algorithm 7-18 8.2 Optimal Algorithm 7-19

8.3 Algorithm (Least Recently Used) 7-20 8.4 Second Chance Algorithm (MRU with Reference bit)7-21
Demand Pagingcocvvieiiiiiiioicin ettt sein e s et s s seseesens e rete e et be s b as st b e s e s nerensseeees 7-21
SOOMBNTALON ...ttt ettt r s er e e b s e st s b et enear et e nnenenes 7-22
10.1 Segmentation with Paging 7-24

8. Flle System 16

INtrodUCHON 8N FIle CONCEPEScc.eiieriicierieecterise et b esbess et ste s reee e et enseesaeseenetenseeaeeameeseeseaene 8-1
1.1 File Operations 8-2

ACCESS MEINOGS ...t ettt st b e e s s st sae st e bt nneneerenes 8-3
2.1 Sequential Access 8-3

2.2 Direct Access 8-4

2.3 Other Access Methods 8-5

File/Directory SHUCIUTEcciiiii st e e s eb s e ear st s ts s e st sbens e beereneeranen 8-5
3.1 Single Level Directory 8-6 3.2 Two Level Directory 8-7

3.3 Tree Structure Directories 8-8 3.4 Acyclic Graph Directories 8-9

File AHOCAtION MBLhOUScocoiiiiieeeiirirerer ettt b st e sn e s s et s s st sttt es e eeeeeanaes 8-10
4.1 Contiguous Allocation 8-10

4.2 Linked Allocation 8-11

4.3 Indexed Allocation 8-11

Filg SYStBM SHUCLUNE ... coiiiriiceec ettt et ee et ers bt r st n bt et ee et e emesnnen 8-12
Free Space ManagBmMEeNt............ccocooiiiivniiieeiinion e sress sttt s et se st sest st s s s sttt stsee et seenenenes 8-13
6.1 Bit Vector 8-14 6.2 Linked List 8-14

6.3 Grouping 8-15 6.4 Counting 8-15

9. I/O System 20

1.

2.
3.
4,
5

8.
9.

Solved Examples

IFOTUCHION ..ot er st b bt b st sas et seesee s et e s b s et s b eseestonbenesarenens 9-1
I/O Hardware....
Application of /O Interface
Direct Memory Access (DMA) .
KeNBI 1/O SUDBSYSIEM........c.iireririitrerieieiietriseirreceebesietes e e st e e e ersns s eae s bssss e st stsbes s senestesesseneseseeesesesnaneas 94
5.1 /O Scheduling 9-4 52 Buffenng 9-4 .
6.3 Caching 9-5 5.4 Spooling and Device Reservation 9-5
6.5 Error Handling 9-6 ’ 5.6 Kernel Data Structures 9-6

5.7 I/O Protection 9-7 5.8 Memory Protection 9-7

5.9 CPU Protection 9-7
Dual Mode Operation .
Disk Scheduling et et e e A e R4 et e b e e aee e a e e s b e bt ente e e e rreeR e e terA b e teeatan b srsnrens

7.1 FCFS Scheduling 9-9 7.2 Shortest Seek Time First (SSTF) Scheduling 9-10
7.3 Scan Scheduling 9-10 7.4 C Scan (Circular Scan) 9-11

7.5 Look and C Look Scheduling 9-12

POMING ..ttt sttt sttt ettt a et abasea e abesa s e e s eerebesaatareasshe s tsae ot et ennnn e e naentenaens
Interrupts.. .

Introduction to OS eiie ' [1599

Chapren 1
INTRODUCTION TO

OPERATING
SYSTEM

1. Introduction

An operating system is the program that is loaded into the computer and which co-ordinates all the
activities among computer hardware devices. It is an interface between user and computer. An
operating system makes everything in the computer to work smoothly and efficiently. It controls the
hardware in the computer peripherals and manages memory and files. It enables the user to
communicate with the computer and other software. .

Examples of operating system include Microsoft Windows, Macintosh, Linux, Unix and DOS.

Definition

“An Operating System (OS) is a program that acts as an
intermediary between the user of a computer and the computer
hardware.”

®

The purpose of operating system is to provide an environment in
which a user can execute programs.

The primary goal of an operating system is thus to make the
computer system convenient to use.

The secondary goal is to use the computer hardware in an efficient
manner.

The components of a computer system are its hardware, software and data. The operating system
provides the means for the proper use of these resources in the operation of the computer system.

An operating system is similar to a government. Like a government, the operating system performs
no useful function by itself. It simply provides an environment within which other programs can do
useful work.

We can view an operating system as a resource allocator. A computer system has many hardware
and software resources that may be required to solve a problem. CPU time, memory space, file
storage space, input-output devices and so on. The operating system acts as the manager of these
resources and allocates them to specific program and users as necessary for tasks.

An operating system also acts as a control program. A control program controls the execution of
user programs to prevent errors and improper use of the computer. It is especially concerned with the
operation and control of input/output devices.

A more common definition of operating system is that it is the “one program runnmg at all times on
the computer (usually called the Kernel) with all else being application program”.

Components of a Computer System

User1 User2 User3 [-~--| User4

4

Compiler Assembier Text Editor Database

System & Application ProgramsS ystem

Operating System

—

Computer
Hardware

Figure 1.1: Abstract view of the components of a computer system

Main components of a computer system are.

1. Hardware

ii. Operating system

ili. Application programs
iv. Users

The hardware i.e., Central Processor Unit (CPU), the memory and the Input/Output (I/O) devices
provides the basic computing resources for the system. The applications program such as word
processors, spreadsheets, computers and the web browsers define the ways in which these resources
are used to solve users computing problems. The operating system controls the hardware and
coordinates its use among the various application programs for the various users.

2. Services Provided by OS

An operating system provides an environment for the execution of programs. The operating system
provides certain services to programs and to the users of those programs. '

User & Other System Programs

Gul Batch Command Line

User interface

System Calls
Program | | . File . Resource -
Execution VQ Operation Systems Communication Allocation Accounting
Error Protection
Detector Services Se (;3; ity

Figure 1.2: A view of operating system services

User interface: All operating systems have a User
Interface (UI). This interface can take several forms. e.g.,
Command Line Interface (CLI), Batch Interface or Graphical
user Interface (GUI).

Program execution: The system must be able to load a
program into memory and to run that program.

/0 (Input/Output) operations: Running program may
require /O. For efficiency and protection users cannot control
/O devices directly. Therefore, the operating system must
provide some means to do I/O.

File system manipulation: Operating system reads and writes into a file. It is the most visible
service of an operating system.

Communications: Communications may be implemented via shared memory or by the
technique of message passing. Communication which takes place between the concurrent
processes can be divided in two parts:

a. Take place between the processes that are running on the same computer and the other.

b. Type of processes are those that are being executed on different computer systems
through a computer network.

Error detection: System must be able to detect CPU or memory failure. There are various
types of errors that occur when the process is running. These errors may be caused by CPU,
memory hardwork, /O devices, etc. The job of operating system to keep track of the errors,
raise appropriate errors at the users screen.

Example, memory error, power failure, lack of paper or printer etc.
Resource allocation: Where there are multiple users or multiple jobs running at the same
time, resources must be allocated to each of them.

Accounting: The operating system keeps track of which users are using how much and what
kinds of computer resources. This record keeping can be used for accounting or simply for
accumulating usage statistics.

Protection and security: Protection involves ensuring that all access to the system resources
is controlled. :

Security of the system starts with requiring each user to authenticate himself or herself to the
system, usually by means of a password to gain access to the system resources.

3. Types of Operating System

Various types of ' operating systems have evolved over time as computer systems and users’
expectations of them have developed, i.e., as computing environments have evolved.

3.1 Simple Batch Operating System
(Long Term Scheduler)

A batch operating system normally reads a stream of separate jobs (from a card reader) each with its
own control cards that predefine what the job does. When the job is complete, its output is usually
printed (on a line printer). The definitive feature of a batch system is the lack of interaction between
the user and the job while that job is executing. The delay between job submission and job
completion (called turnaround time) may result from the amount of computing needed or from
delays before the operating system starts to process the job. In this execution environment, the CPU
is often idle. This idleness occurs because the speeds of the mechanical I/O devices are intrinsically
slower than those of electronic devices.

Program
Control (Punch Card)

Line

Card R N
Reader RAM Printer
CPU
Figure 1.3

The introduction of disk technology has helped in this regard. Rather than the cards being read from
the card reader directly into memory and then the job being processed, cards are read directly from
the card reader onto the disk. The location of card images is recorded in a table kept by the operating
system. When a job is executed, the operating system satisfies its requests for card reader input by
reading from the disk. Similarly, when the job requests the printer to O/P a line, that line is copied
into a system buffer and is written to the disk. When the job is completed the O/P is actually printed.
This form of processing is called spooling.

[S — Simultaneous P — Peripheral]
O - Operation O — Online

Disk
/O
Card v 4 Line
Reader CPU Printer
Figure 1.4

Spooling in essence, uses the disk as a huge buffer, for reading as far ahead as possible on input
devices and for storing output files until the output devices are able to accept them.

Spooling is also used for processing data at remote sites. Spooling has direct beneficial effect on the
performance of the system. For the cost of some disk space and a few tables, the computation of one
job can overlap with the I/O of other jobs. Thus, spooling can keep both the CPU and /O devices
working at much higher rates.

3.2 Multiprogram Batch System

Spooling provides an important data structure: a job pool. A pool of jobs on disks allows the
operating system to select which job to run next, to increase CPU utilization. Thus, job scheduling is
possibly the most important aspect of job scheduling which is the ability to multiprogram.

0
0.S.
JOB1
JOB2
JOB3
512K JOB4
RAM JOB5

Figure 1.5: Memory layout for a multiprogram batch system

Multiprogramming is a feature of an operating system which allows running multiplé program
simultaneously on CPU. It is a form of parallel processing in which several programs run at the same
time on a uniprocessor.

The idea of multiprogramming is as follows:

The operating system keeps several jobs in memory at a time as
shown in figure 1.5. These set of jobs is a subset of jobs kept in job
pool. The operating system picks and begins to execute one of the
jobs in the memory eventually, the job may have to wait for some
task (example, an I/O operation to compute).

In a non-multiprogram system, CPU would sit idle. In a multiprogram system the operating system
simply switches to and executes another job. When that job needs to wait CPU will switch to another
job and so on.

Eventually, first job finishes waiting and gets CPU back. As long as there is always some jobs to
execute CPU will never be idle.

3.3 Time Sharing System (Middle Term Scheduler)

There are some difficulties with a batch system from the point of
view of the user, however since, the user cannot interact with the job
when it is executing the user must set up the control cards to handle
all possible outcomes and it can be extremely difficult to define
completely what to do in all cases.

Another dif'ﬁculty is that program must be debugged statically, from snapshot dumps.

Time sharing or multitasking is a logical extension of multiprogramming. Multiple jobs are executed
by the CPU switching between them but the switches occur so frequently that the users may interact
with each program while it is running.

An interactive or hands-on computer system provides online communication between the user and
the system. '

Time sharing system are developed to provide interactive use of a computer system at a reasonable
cost. A time shared operating system uses CPU scheduling and multiprogramming to provide each

user with a small portion of a time shared computer. Each user has atleast one separate program in
memory. '

A program that is loaded into memory and is executing is commonly referred to as a process.

When a process executes, it specially executes for only a short time before it either finishes or needs
to perform interactive I/O. Rather than let the CPU sit idle when the interactive I/P takes place, the
operating system will rapidly switch the CPU to the program of some other user.

A time shared operating system allows many users to share the computer simultaneously. Since each
action/command in a time shared system tends to be short only a little CPU time is needed for each
user. As the system switches rapidly from one user to the next, each user is given the impression that
he has his own computer whereas actually one computer is being shared among many users.

3.4 Real Time Systems

Real time systems are used when there are rigid time requirements on the operation of a processor
for the flow of data and thus is often used as a controlled device in a dedicated application. A real
time operating system has well defined fixed time constraints. Processing must be done within the
defined constrains, or the system will fail. A real time system is considered to function correctly only
if it returns the correct result within any time constraints.

3.5 Clustered System

Multiprocessing system is similar to multiprogramming system,
except that there is more than one CPU available.

Like multiprocessor system, clustered systems gather together
- multiple CPUs to accomplish computational work.

Clustering is usually used to provide high availability service. That is service will continue even if
one or more systems in the cluster fail. High availability is generally obtained by adding a level of
redundancy in the system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of others. If the monitored machine fails, the monitoring machine can take
ownership of its storage and restart the applications that were running on the failed machine. The
user and clients of the applications can see only a brief interruption of service.

Clustering can be structured asymmetrically or symmetrically. In asymmetrically clustering, one
machine is in not-standby mode while the other is running the application and in symmetric mode,
two or more hosts are running applications and are monitoring each other.

A cluster consists of several computer systems connected via a network. Cluster may also be used to
provide high performance computing environments.

Computer Interconnect Computer Interconnect Computer

Storage
Area

Figure 1.6: General structure of a clustered system

3.6 Distributed Operating Systems

A distributed system is a system consisting of two or more nodes, each node being a computer system
with its own memory, some communication hardware and a capability to perform some control functions
of an operating system.

Distributed bperating system provides the following advantages:

i. Resource sharing
i, Reliability
iii ~ Computation speed-up

iv. Communication
v, Incremental growth

SUMMARY

Operating system is a program that acts as on intermediary between the user of a computer and the
computer hardware.

An operating system acts as a resource allocator.
An operating system acts as an control program.
Various services are provided by operating system like

a. User interface : b. Program execution
c. I/0 operation d. File system Manipulation
e. Communications f. Error detection

There are six types of operating system

a. Simple Batch operating system b. Multiprogram operating system
c. Time sharing operating system d. Real time operating system
e. Clustered operating system f. Distributed operating system

(=] -
3 PU Questions_

[Oct.15.11 Apr. 12 —2M]

1.
QOct. 2014 - 1 2. Whatis Distributed System? List types of distributed system.
Apr. 13, Oct.11 - 2 3. What is meant by Multiprocessor System?
4.

Define Operating System

[Oct. 12, Apr.11 — 2M]

What is Multiprogramming?

[Oct. 2015 — 4M]

1. Explain in detail the long term scheduler.
Oct. 2015 - 4 2. List the different types of operating system. Explain any one.
Apr. 2015 -4 3. Explain medium term scheduler.
Apr. 2013 - 4 4. What is the purpose of an Operating System?
[Oct. 2012 — 4M] o . .
5. Explain different functions performed by an Operating
[Apr. 2011 — 4M] System.

Explain basic services provided by an Operating System,
o :

Chapter 2
SYSTEM

STRUCTURE

1. User Operating System Interface

There are two fundamental approaches for users to interface with the operating system. One
technique is to provide a command-line interface or command interpreter that allows users to directly
enter commands that are to be performed by the operating system. The second approach allows the
user to interface with the operating system via a graphical user interface or GUIL

Command interpreter

Some operating systems include the command interpreter in the
kernel. Others, such as Windows XP and UNIX, treat the command
interpreter as a special program that is running when a job is
initiated or when a user first logs on (an interactive systems).

On systems with multiple command interpreters to choose from, the interpreters are known as shells.
For example, on UNIX and Linux systems, there are several different shells a user may choose from
including the Bourne shell, C shell, Bourne-again shell, the Korn shell, etc. Most shells provide
similar functionality with only minor differences; most users choose a shell based upon personal
preference. . : '

The main function of the command interpreter is to get and execute the next user-specified
command. Many of the commands given at this level manipulate files: create, delete, list, print, copy,
execute, and so on. The MS-DOS and UNIX shells operate in this way. There are two general ways
in which these commands can be implemented.

In one approach, the command intérpreter itself contains the code to execute the command.
For example, a command to delete a file may cause the command interpreter to jump to a section of
its code that sets up the parameters and makes the appropriate system call. In this case, the number of
commands that can be given determines the size of the command interpreter, since each command
requires its own implementing code.

An alternative approach used by UNIX, among other operating systems implements most commands
through system programs. In this case, the command interpreter does not understand the command in
any way; it merely uses the command to identify a file to be loaded into memory and executed.

Thus, the UNIX command to delete a file

rm file.txt

would search for a file called rm, load the file into memory, and execute it with the parameter
file.txt. The function associated with the rm command would be defined completely by the code in
the file rm. In this way, programmers can add new commands to the system easily by creating new
files with the proper names. The command-interpreter program, which can be small, does not have to
be changed for new commands to be added.

Graphical User Interfaces .

A second strategy for interfacing with the operating system is through a user friendly graphical user
interface or GUI. Rather than having users directly enter commands via a command-line interface, a
GUI allows a mouse-based window-and-menu system as an interface. A GUI provides a desktop
metaphor where the mouse is moved to position its pointer on images, oricons, on the screen (the
desktop) that represent programs, files, directories, and system functions. Depending on the mouse
pointer’s location, clicking a button on the mouse can invoke a program, select a file or directory
known as a folder or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place in the early 1970s at
Xerox PARC research facility. The first GUI appeared on the Xerox Alto computer in 1973.
However, graphical interfaces became more widespread with the advent of Apple Macintosh
computers in the 1980s. The user interface to the Macintosh Operating System (Mac OS) has
undergone various changes over the years, the most significant being the adoption of the Aqua
interface that appeared with Mac OS X. Microsoft’s first version of Windows version 1.0 was based

e ®

upon a GUI interface to the MS-DOS operating system. The various versions of Windows systems
preceeding this initial version have made cosmetic changes to the appearance of the GUI and several
enhancements to its functionality, including the Windows Explorer Commercial versions of UNIX
such as Solaris and IBM’s AIX system. However there has been significant development in GUI
designs from various open source projects such as K Desktop Environment (or KDE) and the
GNOME desktop by the GNU project. Both the KDE and GNOME desktops run on Linux and
various UNIX systems and are available under open-source licenses, which mean their source code
1s in the public domain. The choice of whether to use a command-line or GUI interface is mostly one
of personal preference. As a very general rule, many UNIX users prefer a command-line interface as
they often provide powerful shell interfaces.

Alternatively, most Windows users are pleased to use the Windows GUI environment and almost
never use the MS-DOS shell interface.

The various changes undergone by the Macintosh operating systems provide a nice study in contrast.
Historically, Mac OS has not provided a command line interface, always requiring its users to
interface with the operating system using its GUL However, with the release of Mac OS X (which is
in part implemented using a UNIX kernel), the operating system now provides both a new Aqua
interface and command-line interface as well.

The user interface can vary from system to system and even from user to user within a system.
It typically is substantially removed from the actual system structure. The design of a useful and
friendly user interface is therefore not a direct function of the operating system.

2. System Calls

Systems calls provide the interface between a process and the OS.
These calls are generally available in the assembly language
instructions. Certain systems allow system calls to be made directly
from a higher level language program in which the calls normally
resemble predefined function. .

The request and the release of resources are system calls.
For example, request, release of device, open, close of file, allocate and free memory.

System calls provides the interface between a process and the operating system. These calls are
generally available as assembly language instructions.

risture

Some systems may allow system calls to be made directly from a higher level language program, in
this case the calls normally reassemble predefined functions or subroutine calls. They may generate a
call to a special run-time routine that makes the system call.

System calls can be roughly grouped into Jollowing categories:

i

if.

iii.

iv.

Process or Job Control

A running program needs to be able to halt execution either normally (end) or abnormally
(abort).

Process Control

a. End abort

b. Load execute

c. Create process, terminate process

d. Allocate a file memory

File Management

a. Create file, delete file

b. Open, close file

c. Read, write reposition file.

Device Management

A process may need several resources to execute main memory, disk drives access to file, etc.
If the resources are available they can be granted and control can be returned to the user
process.

a. Request device, release device

b. Logically attach or detach devices

Information Maintenance

Operating system keeps information about all its processes and system calls are used to access
this information.

a. Get system data, set system data
b. Get/set time date.
C. Get/set process, file or device attributes.

Communication

There are two common models of interprocess communication: the message passing model
and the shared memory model.

In the message passing model, the communicating processes exchange messages. with one-
another to transfer information.

-

In the shared memory model, processes use shared memory, create and shared memory attach
system calls to create and gain access to regions of memory owned by other processes.

a. Create delete communication
b. Send/receive messages

vi. System Program (SP)

System programs, also known as system utilities, provide a convenient environment for
program development and execution. S.P. are divided into following categories:

a. File Management: These programs create, delete, copy, rename, print, dump, list the
files.

b. Status information: These are used to get information
about system e.g., the system program that can use to
get date, time of system, amount of available memory,
amount of free memory etc.

C. File modification: To create file and edit the content of
files we can have text editor.

d. Programming language support: Compilers, assembler, debuggers and interpreter for
common programming languages are provided.

e. Program loading and execution: System program like loaders, links are provided.

3. Architecture of Computer System

Computer architecture is the conceptual design and fundamental operational structure of a computer
system. It is a blueprint and functional description of requirements (especially speeds and
interconnections) and design implementations for the various parts of a computer focusing largely on
the way by which the Central Processing Unit (CPU) performs internally and accesses addresses in
memory. It may also be defined as the science and art of selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. "Architecture"
therefore typically refers to the fixed internal structure of the CPU (i.e. electronic switches to
represent logic gates) to perform logical operations, and may also include the built-in interface
(i.e. opcodes) by which hardware resources (i.e. CPU, memory, and also motherboard, peripherals)
may be used by the software. It is frequently confused with computer organization. But computer
architecture is the abstract image of a computing system that is seen by a machine language (or

assembly language) programmer, including the instruction set, memory address modes, processor
registers, and address and data formats; whereas the computer organization is a lower level, more
‘concrete, description of the system that involves how the constituent parts of the system are
interconnected and how they interoperate in order to implement the architectural specification.

Figure 2.1

Figure 2.1 a typical vision of a computer architecture as a series of abstraction layers: hardware,
firmware, assembler, kernel, operating system and applications

Abstraction Layer

An abstraction layer (or abstraction level) is a way of hiding the implementation details of a
particular set of functionality. Perhaps the most well known software models which use layers of
abstraction are the OSI 7 Layer model for computer protocols, OpenGL graphics drawing library,
and the byte stream I/O model originated by Unix and adopted by MSDOS, Linux, and most other
modern operating systems. In computer science, an abstraction level is a generalization of a model or
algorithm, away from any specific implementation. These generalizations arise from broad
similarities that are best encapsulated by models that express similarities present in various specific
implementations. The simplification provided by a good abstraction layer allows for easy reuse by
distilling a useful concept or metaphor so that situations where it may be accurately applied can be
quickly recognized. A good abstraction will generalize that which can be made abstract; while
allowing specificity where the abstraction breaks down and its successful application requires
customization to each unique requirement or problem.

Firmware

In computing, firmware is software that is embedded in a hardware device. It is often provided on
flash ROMs or as a binary image file that can be uploaded onto existing hardware by a user.

Firmware is defined as:

i. The computer program in a Read-Only Memory (ROM) integrated circuit (a hardware part
number or other configuration identifier is usually used to represent the software);

ii. The erasable programmable Read-Only Memory (EPROM) chip, whose program may be
modified by special external hardware, but not by [a general purpose] application program.

iii. The electrically Erasable Programmable Read-Only Memory (EEPROM) chip, whose
program may be modified by special electrical external hardware (not the usual optical light),
but not by [a general purpose] application program.

Assembler

An assembly language program is translated into the target computer's machine code by a utility
program called an assembler. Typically a modern assembler creates object code by translating
assembly instruction mnemonics into opcodes, and by resolving symbolic names for memory
locations and other entities. The use of symbolic references is a key feature of assemblers, saving
tedious calculations and manual address updates after program modifications.

Kernel

In computing, the kernel is the central component of most computer operating systems (OSs). Its
responsibilities include managing the system's resources and the communication between hardware
and software components. As a basic component of an operating system, a kernel provides the
lowest-level abstraction layer for the resources (especially memory, processor and /O devices) that
applications must control to perform their function. It typically makes these facilities available to
application processes through inter-process communication mechanisms and system calls. These
tasks are done differently by different kernels, depending on their design and implementation. While
monolithic kernels will try to achieve these goals by executing all the code in the same address space
to increase the-performance of the system, micro kernels run most of their services in user space,
aiming to improve maintainability and 9 modularity of the code base. A range of possibilities exists
between these two extremes.

Figure 2.2

Figure 2.2 shows a kernel connects the application software to the hardware of a computer.

3.1 Ope‘rating System

An operating system (OS) is a computer program that manages the hardware and software resources
“of a computer. At the foundation of all system software, an operating system performs basic tasks
such as controlling and allocating memory, prioritizing system requests, controlling input and output
devices, facilitating networking, and managing files. It also may provide a graphical user interface
for higher level functions. It forms a platform for other software.

Application Software

Application software is a subclass of computer software that employs the capabilities of a computer
directly to a task that the user wishes to perform. This should be contrasted with system software
which is involved in integrating a computer's various capabilities, but typically does not directly
apply them in the performance of tasks that benefit the user. In this context the term application
refers to both the application software and its implementation

4. Operating SyStem Structure

An operating system provides the environment within which programs are executed. One can view
an operating system from various angles. One is by examining the services it provides. Another is by
looking at the interface it makes available to users and programmers. Third is by disassembling the
system components and their interconnections. Whenever we want to build a large system, we
typically break it into smaller components.
Operating system is divided in two parts:

. Kernel: This is the innermost layer of operating system close
to the hardware and it controls the actual hardware. It is the
heart of the operating system. It consists of routines, which
are required very often and almost all the time.

ii. Special routines: These are loaded from the disk to the
memory as and when required. It saves the usage of memory
but extra time is required for loading and unloading the
routines.

Kernel
Special Routines
Application Programs

Figure 2.3: Structure of operating system

The operating system structure is a broad framework that unifies many features and services
provided by the operating system.

Operating systems are broadly classified into following categories:

1. Simple structure

ii. Layered structure

ili. Microkernel structure
iv. Monolithic structure

4.1 Simple Structure

Some commercial operating systems do not have well-defined structure. Such operating systems are
initially designed as small and simple. MS-DOS is an example of such operating system. When it

was designed and implemented originally by few people, they had no idea about the popularity of
this system.

It was designed to provide number of functions using very less memory space. So it was not properly
divided into modules. Also, the interfaces and functionality levels are not well separated.

| Application PFrogram]
v
| Residert SystermProgram

[VBSOS Davice Divers|

[R:J_/laosoememw;s '|

Figure 2.4: MS-DOS layer structure

As shown in figure 2.4, the application programs can directly access the device drivers and resident
system programs, due to which MS-DOS is vulnerable to errant programs and crashes the entire
system. MS-DOS was designed for Intel 8088, and was unable to provide dual mode and hardware
protection.

Another example of limited structuring is the original UNIX operating system. UNIX operating
system was initially limited by hardware functionality.

4.2 Layered Structure

The components of layered operating system are organized into modules. These modules are layered
one on top of the other, i.e., a top down approach is provided. A set of functions is provided by each
module that is called by other modules. The layered operating system structure with hierarchical
organization of modules is shown in figure 2.5.

System verification and debugging is simplified due to such approach. The first layer uses only the
basic hardware to implement its functions, so i is easy to debug the first layer without any concern
for the rest of the system. The second layer can be debugged only after debugging the first layer and
assuming the correct functioning of the first layer and so on.

Application Application
Program Program
User Mode
Kemel Mode
Y

System Services

‘ File System

Memory and I/O Device Management

v

Processor Scheduling

v

‘Hardware

Figure 2.5: Layered operating system

If any error is found during the debugging of a particular layer, the error must be on the layer,

because the lower layers are already debugged. That is in

this approach, the N layer can access
pp Y

services provided by the (N-1)* layer and provide services to the (N+1)™* layer. Thus, the operating
system is debugged starting from the lowest layer, adding one layer at a time until the whole system

works correctly.

The operating system can be enhanced easily by using the layered structure; one entire layer can be
replaced without affecting other parts of the system. Layered operating system gives low application

performance in comparison to monolithic operating system.

Examples of layered operating systems are Multics and UNIX.

4.3 Microkernel Structure

Microkernel does not mean small system. The word ‘micro’ means the kernel providing minimum
functions that allow user-level system processes to perform operating services efficiently. The
microkernel implements essential core-operating system functions. The functions include process
management, inter-process communication, address space management, and hardware abstraction.

A microkernel is a tiny operating system core to be used in next-generation operating system as it
provides foundation for modular and portable extensions of operating systems. A microkernel
operating system provides unprecedented modularity, flexibility, and portability.

Client PEACE Threads File Display
Application Interface Server Server ‘
‘ User Mode
Kernel Mode

Microkernel
Hardware

Figure 2.6: Microkernel operating system

Send —>
Reply €¢<———

In microkernel structure, the operating system is divided into several processes, each of which
implements a single set of services, example, /O servers, memory server, process server, threads
interface system. Each server runs in user mode, and it provides services to the requested client. The
client can be either another operating system or application program. The client requests a service by
sending a message to the server. This communication takes place by using message passing method.
The microkernel running in kernel mode delivers the message to the appropriate server. The server
then performs the operation and microkernel passes the results to the client in another message, as
shown in figure 2.6. Components above the microkernel communicate directly with one another by
passing messages through microkernel itself. The microkernel controls the traffic. It validates
messages and passes them between the components and grants access to hardware.

Since most of the services are running as a user processes rather than kernel processes, the
microkernel structure provides more security and reliability.

4.4 Monolithic Structure

A Monolithic kernel is one single large program, composed of several logically different program
pieces. The components of monolithic operating system are organized haphazardly and any module
can call any other module without any reservation. Similar to the other operating systems,
applications in monolithic OS are separated from the operating system itself, i.e., operating system
code runs in a privileged processor mode (kernel mode), which has access to system data and to the

-

hardware; applications run in a non-privileged processor mode (user mode), with a limited set of
interfaces available and with limited access to system data. The monolithic operating structure with
separate user and kernel processor mode is shown in figure 2.7.

Application o Application
Program Program

User Mode
Kernel Mode

System Services

A A
- A N
____I ” l_
A A A A
L T> y
Operating - [_— ——}
S)F/)stem ’ + v A
Procedures ! I ‘
4 N A 4
Hardware M

Figure 2.7: Monolithic operating system

When a user mode program calls a system service, the processor traps the call and then switches the
calling thread to kernel mode. Completion of system service, switches the thread back to the user
mode, by operating system allows the caller to continue. ‘

The monolithic structure does not enforce data hiding in the operating system. It delivers better
application performance, but extending such a system can be difficult work because modifying a
procedure can introduce bugs in seemingly unrelated parts of the system. Example of monolithic OS
is MS-DOS.

SUMMARY

An operating system provides the environment within which programs are executed.

The design of a new operating system is a major task.

System calls provide the interface between a process and the operating system.

An operating system structure is a broad framework that unifies many features and services provided by
the operating system.

[Oct.2015 — 2M]

What is command interpreter?
Apr.2015 - 2 What is the purpose of command interpreter?

1
2
[Apr.2015 — 2M] 3. Define system program.
[Oct.2014 — 2M] 4 List system calls related to communication.

[Oct2015-4M] 1. Define system call. Explain the system calls related to device
manipulation.

[Oct2014-4M 2. List and Explain system calls related to Device Management.

[Oct.2014 —~ 4M] 3. . Explain architecture of Computer System.

[Oct.2011 — 4M] 4. Describe the Structure of Operating System with the help of a

v ‘ suitable diagram.
[Apr.2012 = M) List and explain different types of system programs.

(e
VISION

hd

Chapter 5
PROCESS

MANAGEMENT

1. Process Concept

The concept of process is the heart of operating systems.

Informally, a process is a program in execution.

A process is more than the program code (sometimes known as the text section or code segment).
It also includes the current activity as represented by the value of program counter and the contents
of the processor register.

A process generally includes the process stack, containing temporary data and a data section
containing global variables.

Typically, a batch job is a process and a time shared user program is a process, a system task such as
spooling is also a process.

Process execution is a cycle of CPU execution and I/O wait. Processes alternate back and forth
between these two states. Process execution begins with a CPU burst.

It is followed by I/O burst which is followed by another CPU burst then another /O burst and so on.
Eventually the last CPU burst will end with a system request to terminate execution.

Functions of Process
1. Creating and removing processes.

ii. Controlling the progress of processes that is, ensuring that
each logically enabled processes make progress towards its
completion at a positive rate.

iii. Allocating hardware resources among processes.

iv. Providing a means of communicating messages or signals
among processes.

v. Acting on exceptional conditions arising during the execution of a process, mcludmg
interrupts and arithmetic errors.

Once created, a process becomes active and eligible to compete for system resources such as
processor and I/O devices. Each active process is an individually schedulable entity.

A process is a dynamic concept that refer to a program in execution which undergoes frequent state
and attribute changes.

2. Process State

As a process executes, it changes state. The state of a process is defined in part by the current
activity of the process. Each process may be in one of the following states.

Figure 3.1: Process state diagram

i New: The process is being created.

ii. Running: Instructions are being executed.

iii. Waiting: The process is waiting for some event to occur.

iv. Ready: The process is waiting to be assigned to a processor.
V. Terminated: The process has finished execution.

The state of a process is defined in part by the current activity of that process.

Process execution is an alternating sequence of CPU and I/O bursts beginning and ending with the
CPU burst.

The process states can be further refined. Since the CPU may be shared among several process, an
active process may either be waiting for the CPU or executing on it. A process which is waiting for
the CPU is ready. A process, which has been allocated the CPU is running.

Whenever the CPU becomes idle, the operating system must select one of the processes in the ready
queue to be executed: The part of the operating system which carries out this selection process is
called as short-term scheduler or CPU scheduler. The scheduler selects from among the process
in memory that are ready to execute and allocates the CPU to one of them. The algorlthm used by
CPU scheduler is called as CPU scheduling algorithm.

3. Process Control Block

The operating system groups all information that it needs about a particular process into a data
structure called a Process Descriptor or Process Control Block (PCB).

Whenever, a process is created the operating system creates a corresponding process control block to
serve as its run-time description during lifetime of the process. When process terminates, its PCB is
released to pool of free cells.

Process Number

Program Counter
Register

Memory Information

List of Open Files

4-

Process state: It may be ready, running, waiting, halted and so on.

Program counter: The counter indicates address of next instruction to be executed for this
process.

CPU registers: Along with program counter this state information must be saved when an
interrupt occurs, to allow the process to be continued correctly afterwards.

CPU scheduling information: This information includes process, pictures pointer to
scheduler queue and other scheduling parameters.

Memory management information: This information include value of base and limit
registers, page tables or segment tables.

Accounting information: This information includes the amount of CPU and real-time used,
time limits, account numbers, job or process number and so on.

I/0 states information: This information includes list of the I/O devices allocated to this
process, a list of open files and so on.

Context Switch

Switching the CPU to another process requires saving the state of the old process and loading the
saved state for the new process. This task is known as Context switch.

The context of a process is represented in the PCB of a process, it includes the value of the CPU
registers, the process state and memory management information. When a context switch occurs, the
kernel (operating system) saves the context of the old process in its PCB and loads the saved context
of the new process scheduled to run.

Context switch time is pure overhead, because the system does no useful work while switching. Its
speed varies from machine to machine depending on the memory speed, the number of registers that
must be copied and the existence of special instructions.

5.

The processes in the system can execute concurrently and they must
be created and deleted dynamically. Thus, the operating system must
provide a mechanism for process creation and termination.

Operations on Processes

5.1 Process Creation

A process may create several new process via a create process system call during its course of
execution. The creating process is called a parent process whereas the new processes are called as
the child of that process. Each of these processes may in turn create other process forming a tree of
processes.

I |
l Program 1] | Program 2!] Init () I
I

|
IUser1i |User2‘ [UserSI
I

]

Figure 3.2: Tree of process

A process during execution needs various resources like CPU time, memory files, /O devices etc.
When a process creates sub-processes the sub-process will also require some of the resources. The
sub-process may be able to obtain its resources directly from the operating system or it may be
constrained to a subset of the resources of the parent process.

The parent may have to partition its resources among its children or it may be able to share some
resources among several of its children.

Restricting a child process to a subset of the parents resources prevents any process from
overloading the system by creating too many sub-processes.

When a process creates a new process, following two possibilities exists in terms of execution:
1. The parent continues to execute concurrently with its children.
ii. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process (child
process)

a. The child process (new process) is a duplicate of the parent process.

b. The child process has a program loaded into it.

Following are the functions/tasks performed by the operating system (Kernel) when a process is
created. :

1. It allocates a slot in the process table for new process.
ii. Itassigns unique ID number to the child process.

iii. It makes a logical copy of the context of the parent process since, certain portions of a process,
such as a text region, may be shared between processes the kernel can sometimes increment a
region to a new physical location in memory.

iv. It increments file and inode table counters for files associated with the process.

v. It returns ID number of child to parent process and a value 0 (zero) to child process.

5.2 Process Termination

A process terminates when it finishes executing its final statement and asks the operating system to
delete it by using the ‘exit’ system call.

At that point the process may return data (Output) to its parent process (via the ‘wait’ system call).

Process in UNIX operating system terminate by executing the exit system call. An exiting process
enters zombie state, releases all its resources dismantles its context except for its slot in the process
table.

Syntax

exit (status)

The value of the status is returned to the parent process for its examination. Processes may call exit
explicitly or implicitly at the end of the program.

All the resources of the process are deallocated by the operating system. Termination might occur
under additional circumstances.

For example,

A process can cause the termination of another process via an appropriate system call (example,
abort).

Usually only the parent of the process that is to be terminated can mvoke such a system call, otherwise
users would arbitrarily keep aborting each others job.

A parent therefore needs to know the identities of its children. Thus when one process creates a new
process the identity of the newly, created process is passed to the parent.

A parent can terminate the execution of its children for a number of reasons like:
1. If the child has executed its usage of some of the resources that it has been allocated.
ii. The task assigned to the child is no longer required.

iii. The parent is terminating in this case the operating system does not allow a child to continue if
its parent terminates. So if a process terminates (either normally or abnormally) then all its
children must also be terminated. This is called as cascading termination and is normally
initiated by the operating system.

6. Types of Processes

Processes can be of three types

1. User process: User process is a process associated with the terminal.

2. Daemon process: Daemon process do a system wide function such as administration and
control of networks, execution of time dependent activities, line printer spooling. These
processes are like user processes in that they run at user node and make system calls to access
system services.

3. Kernel process: The kernel processes execute only in kernel mode. Kernel process are similar
to Daemon processes, they provide system wide services but they have greater control over
their execution as it is a part of the kernel. They can access kernel algorithms and data
structures directly without use of system calls. But, they are less flexible as kernel need to
recompile them to change them.

7. Signals

Signals inform processes of the occurrence of a synchronous events. Processes may send signals
with the kill system call or kernel may send signals internally.

Signals are used on termination of process, when a process exits or when a process invoke signal
system call on the termination of child process.

Signals are caused by an unexpected error condition during a system call, such as making a
nonexistent system call.

Signals are used for tracing execution of the process.

SUMMARY

A process is more than a program code. A process is a program in execution.
There are various states of a process. /

a. New b. Waiting

c. Running d. Terminated e. Ready

The operating system groups all information that it needs about a particular process into a data structure
called as a process Descriptor or Process Control Block (PCB).

Switching the CPU to another process requires scoring the state of the old process and loading the
saved state for the new process. This task is known as context switch.

Various operation on the process can be performed like.

a. Process creation: The create() system call is used for creating a new process.
b. Process termination: The exit() system call is used for exiting from the process.
There are three types of process in Unix operating system.

a. User processes

b. Daemon processes

c. Kernel processes

Signals are used to inform the processes for the occurrences of the synchronous events.

[Oct.15,14.11,Apr.12 — 2M]

PU Questions

What do you mean by context switch?

1
[Apr.15,0ct.12 — 2M] 2. What is meant by Process?
4 Marks

[Oct. 2015 - 4M] 1. Explain in detail the process control block.
[Apr. 2015 — 4M] 2. In normal mgde .of operation. List and explain the
v sequence of utilization of resources by process.

[Apr. 2015 — 4M] 3. Explain operations on process in detail.

[Apr. 2013 — 4M} 4. Explain PCB with proper diagram.

[0ct.2012 — 4M] 5. Exp}ain in detail the various process states with the help
of diagram.

[Apr.2012 - 4M] 6. Explain the Creation and Termination of Processes.

[Oct.11,Apr. 2011 = 4M] 7. Explain I_’rocess Control Block (PCB) in detail with the

help of diagram.

(7
VISION

Chapter 4
CPU
SCHEDULING

1. Introduction

CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU among
processes, the operating system can make the computer more productive. In this chapter, we
introduce basic CPU-scheduling concepts and present several CPU-scheduling algorithms. We also
consider the problem of selecting an algorithm for a particular system.

2. Scheduling Concepts

In multiprogramming environment, there may be the situation where two or more processes are
simultaneously in ready state and if only one CPU is available, then a choice has to be made as to
which process should execute next. The part of operating system that makes this choice is called
scheduler and the algorithms it uses are called scheduling algorithms.

A major issue related to scheduling is when to make scheduling decisions.
There are many situations when scheduling is required.
1. When a new process is created, then decision regarding whether parent or child process should

be executed.

ii. ~ Whena process exits, then some other process must be selected from set of ready states. If no
process is in ready state, a system supplied idle process is executed.

iti.. When a process blocks on I/O, on a semaphore, or for some other reason, another process has
to be selected to run.

iv. When an /O interrupt occurs, a scheduling decision may be made.

Scheduling algorithms can be divided into two categories depending on how they deal with clock
interrupts:

A non-preemptive scheduling algorithm picks a process to fun and then just lets it run until it blocks
or until it voluntarily releases its CPU. In other words, no scheduling decisions are made during
clock interrupts. After clock interrupt processing has been completed, the process that was running
before the interrupt is always resumed.

A Preemptive scheduling algorithm picks a process to run and lets it run for a maximum of some
fixed time. If it is still running at the end of time interval, it is suspended and the scheduler picks
another process to run.

Different scheduling algorithms are needed in different environment and different application areas.
Three distinguishable environments are:

a. Batch: No users are impatiently waiting for quick response. This approach reduces process
switches thus improving performance.

b. Interactive: Here preemption is essential to keep one process from hogging the CPU and
denying service to others. One process might shut out all others indefinitely. Hence
preemption is needed to prevent this behavior.

c. Real time: Here preemption is sometimes not needed since the processes know that they may
not run for long periods of time and usually do their work quickly.

Goals of scheduling algorithms also differ under different circumstances as can be seen from
Jollowing chart:

: Fairness: Giving each process a fair share of CPU
All systems Policy enforcement. Seeing that stated policy is carried out
Balance: Keeping all parts of system busy

Throughput. Maximize jobs per hour
Batch systems Turnaround time: Minimize time between submission and termination
CPU utilization: Keep CPU busy all the time

Response time: Respond to requests quickly
Proportionality: Meet users expectations

Interactive systems

Meeting deadlines: Avoid losing data

[ti
Real time systems Predictability: Avoid quality degradation in multimedia systems

21 CPU Scheduler (Short Term Scheduler)

An interesting property of processes is that process execution
consists of a cycle of CPU execution and I/O wait. Processes
alternate back and forth between these two states.

Whenever the CPU becomes idle, the operating system must select one of the processes in the ready
queue to be executed. The part of the operating system which carries out this selection process is
called as ‘Short-term scheduler or CPU scheduler.’

The scheduler select from among the processes in memory that are ready to execute and allocates the
CPU to one of them. The algorithm used by CPU scheduler is called as ‘CPU scheduling
algorithm.’

2.2 CPU 1I/O Burst Cycle

The success of CPU scheduling depends on as observed property of processes. Process execution
consists of a cycle of CPU execution and /O wait. Processes alternate between these two states.
Process execution begins with a CPU burst that is followed by an I/O burst, which is followed by
another CPU burst, then another /O burst and so on. Eventually, the final CPU burst ends with a
system request to terminate execution. An I/O bound program typically has many short CPU bursts.

2.3

Load store
add store
read from file

CPU burst

wait for /O /O burst

store increment
index
write to file

CPU burst

wait for /O 1/O burst

load store
add store
read from file

wait for /O

CPU burst

/O burst

Figure 4.1: Alternating sequence of CPU and /O bursts

Preemptive and Non-preemptive Scheduling

Non-preemptive scheduling: With non-preemptive case, once CPU is given to a particular
process, it will not release the CPU till its CPU burst time is over.

Characteristics of Non-Preemptive Scheduling

a. In non preemptive system, short jobs are made to wait by longer jobs but the overall
treatment of all processes is fair.

b. In non-preemptive, response times are more predictable because incoming high priority

jobs cannot displace waiting jobs.

C. In non-preemptive scheduling a scheduler executes jobs in the following two situations.
i. When a process switches from running state to the waiting state.

ii. ~ When a process terminates.

Scheduling

Preemptive scheduling: The strategy of allowing processes
that are logically, runnable to be temporarily suspended is
called preemptive scheduling and it is contrast to the run to
completion method.

A scheduling discipline is preemptive if once a process has
been given the CPU can take away.

Differentiate between the Preemptive and Non-preemptive

In this, once the CPU is allocated
to the process, the process keeps
the CPU till the time it terminates
or it switches to wait state.

In this, once the process is allocated
to CPU, it can be preempted any
time as a result of occurrence of

higher priority process or an
interrupt occurs or process finishes
its 1/0. :

Context switch is not required.

Requires context switching.

The dispatcher is a module that gives control of the CPU to the
process selected by the short term scheduler. The time it takes for
the dispatcher to stop one process and start another running is known
as ‘dispatch latencing.’

Functions of Dispatcher

1. Switching context
ii. Switching to user mode

ii. | Always supports single | Supports multiprogramming.
programming.)

iv. | Suffers from deadlock. Suffers from starvation.

v. | Process waiting time is less. Waiting time of low priority
processes is more.

vi. | Used in Windows 3.x. Windows 95 is used till now in all
next generations of windows.

2.4 Dispatcher

iii. Jumping to the proper location in the user program to restart that program.

‘3. Scheduling Criteria

Different CPU scheduling algorithms have different properties and the choice of a particular
algorithm may favour one class of processes over another.

The criteria Jor good scheduling algorithm are:

1.

CPU Utilization: We want to keep the CPU as busy as
possible. Conceptually, CPU utilization can range, from 0 to
100%. In a real system, it should range from 40% to 90%.

Throughput: If the CPU is busy executing processes, then
work is being done. One measure of work is the number of
processes that are completed pre unit time called throughput.
For long process, this rate may be one process per hour, for
short transactions it may be ten processes per second.

In short throughput is: “The number of processes that are
completed per time unit is called throughput it should be
maximum.”

Turnaround time: The interval from the time of submission
of a process to the time of completion of a process is called
turnaround time and it should be minimum.

The turnaround time is the sum of the periods spent waiting to
get into memory, waiting in the ready queue, executing on the
CPU and doing I/O.

Waiting time: Waiting time is the period spent waiting in the
ready queue by a process. It should be minimum,

- The CPU scheduling algorithm does not affect the amount of

time during which a process executes or does I/O. It affects
only the amount of time that a process spends waiting in the
ready queue.

Response time: Response time is the time from the
submission of a request until the first response is produced.
This measure called the response time, is the time it takes to
start responding, not the time it takes to output the response.

Allocation of the time slice to a process/thread which is waiting for
CPU time is referred as burst time. Burst in computer language is
referred when a process/thread needs CPU time. OS allocates the
time slice to each process/thread.

4. Scheduling Algorithm

CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to
be allocated to the CPU. There are many different CPU scheduling algorithms.

4.1 First Come First Serve Scheduling (FCFS)

It is the simplest CPU scheduling algorithm. In this scheme, the process that requests the CPU first is
allocated the CPU first. The average waiting time under the First Come First Serve scheduling
(FCFS) policy is often quite long. The FCFS scheduling algorithm is NON-PREEMPTIVE. The
implementation of the FCFS policy is easily managed with a FIFO queue. When a process enters the
ready queue, its PCB (Process Control Block) is linked onto the tail of the queue. When the CPU is
free it is allocated to the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling algorithm is simple to write.

Examples

1.
P4 24
P2 3
Ps3 3

Solution

If the process arrive in the order Py, P,, P; and are served in FCFS order, we get the result as shown
in the following Gantt Chart, which is a bar chart that illustrates a particular schedule including the
start and finish times of each of the participating process.

Gantt chart

P4 P2 Ps

Now the average waiting time for the processes P;, P, and P; as follows

P; = 0 ms (milliseconds)

P, =24 ms
P; =27 ms
.. . P 1 + Pz + P3
Average waiting time (AWT) = 3
_0+24+27
==

= 17 milliseconds

.. Average waiting time = 17 ms
Now,

We need to calculate the average turnaround time.

. Average Turnaround Time (ATT) = Waiting Time (WT) + Burst Time (BT)

S Pi=0+24=24
P,=24+3=27
P,=27+3=30

P,+P,+P

ATT:I—;——S

_(24+27+30) 81
B 3 3
=27 msec.

. Average turnaround time = 27 ms

2.

P
P2

P3
P4

WO,

Solution
The Gantt chart for the above processes would be

P4 P2 Ps3

P4

Average Waiting Time
P, =0ms
P, =5ms
P;=11ms
P,=13ms
P,+P,+P;+ P,
4

0+5+11+13
4

AWT =

29

4

I

AWT =7.25 ms
Now,

We need to calculate the average turnaround time

Average Turnaround Time ="
Pi=0+5=5ms
P,=5+6=11ms
P;=114+2=13ms

- Py=13+3=16ms

P, +P,+P;+ Py
4

_S+11+13+16 45
= 4 T4

ATT =1125ms

ATT

.. Average Turnaround Time = 11.25 ms

16

4.2 Shortest-Job First Scheduling Algorithm (SJFS)

This algorithm associates each process with the length of the next CPU burst. When the CPU is
available it is assigned to the process that has the smallest next CPU burst. If two process have the
same length for next CPU burst, FCFS scheduling is used to break the tie. The shortest job first
scheduling algorithm may be either preemptive or non-preemptive.

The choice arises when a new process arrives at the ready queue while a previous process is
executing. The new process may have a shorter, next CPU burst than what is left of the currently
executing process.

A preemptive SJFS algorithm will preempt the currently executing process, whereas a non-
preemptive SJFS algorithm will allow the currently running process to finish its CPU burst.

Preemptive SJF schéduling is sometimes called as Shortest Remaining Time First Scheduling
(SRTFS) algorithm. ' ‘

Examples

1. Non-Preemptive SJF algorithm

P, 6
p2 8
Ps 7
P4 3
Solution
Gantt chart
P4 P4 Ps3 P2
0 3 ' 9 16 24

Average Waiting Time for

P, =3 ms
P,=16 ms
P;=9ms

P,=0ms

_P1+P2+P3+P4

AWT 7
- 3+16+9+0 28
- 4 T4
AWT =7 ms

. Average Waiting Time = 7 ms
Now,
We need to calculate the average turnaround time.
Average Turnaround Time for
P,=3+6=9ms
P,=16+8=24ms
P;=9+7=16ms

P,=0+3=3ms
. P, +P,+P3;+ P,
Average Turnaround Time = -

_9+24+16+3
B 4
L2
T4

ATT =13ms

. Average Turnaround Time = 13 ms

2. Preemptive SJF algorithm

P 0
P2 1
P 2
Py 3

(O 00

Solution

If the processes arrive at the ready queue at the times shown and need the indicated burst times then
the resulting preemptive SJF schedule is as depicted on the following Gantt Chart.

Gantt chart

[P | Py | Py |

Now,

Average Waiting Time for
P,=10-1=9ms

P,=1-1=0ms

P;=17-2=15ms

P,=5-3=2ms

: P,+P,+P;+P

ATT = 1 243 4
_9+0+15+2 26
- 4 T4

AWT = 6.5 ms

. Average Waiting Time = 6.5 ms
Now,

We need to calculate the Average Turnaround Time (ATT)

AWT + Burst Time
No of processes

ATT =

P;=9+8=17ms
P,=0+4=4ms
P;=15+9=24 ms
P,=2+5=7ms

.. : P,+P,+Py+ Py
. Average Waiting Time = 2

_17+4+24+7 52

4 vy
=13 ms

. Average Turnaround Time = 13 ms

H
|

4.3 Priority Scheduling Algorithm

With this scheme, a priority is associated with each process and the
CPU is allocated to the process with the highest priority.

Equal priority process are scheduled in FCFS order. Priorities can be
defined either internally or externally.

Interna]ly, defined priorities may use time limits, memory requirements and the number of open files
etc. in computing priorities.

External priorities are set by criteria that are external to the operating system, such as the importance
of the process, the type and amount of funds being paid for computer use, and other often political
factors.

Priority scheduling can be either preemptive or non-preemptive.
A major problem with priority scheduling algorithms is indefinite blocking or starvation.
A process that is ready to run but lacking the CPU can be considered blocked, waiting for the CPU.

A solution to the problem of indefinite blockage of low priority processes is aging.

‘Aging is a technique of gradually increasing the priority of processes that wait in the system
for long time’.

Examples

1. Non- preemptive priority scheduling algorithm

P4 10 3
P, 1 1 (high)
P3 2 5
Pa 1 4
Ps 5 2

Solution
Using priority scheduling, we would schedule these processes according to the following Gantt chart

Gantt chart

P2 Ps P4 P . P4
0 1 6 16 18 19

The Average Waiting Time for
P,=6ms

P2=Oms

P; =16 ms
P,=18ms
Ps=1ms
: . _ P, +P,+P;+P,+Ps
Average Waiting Time = 3

6+0+16+18+1

5
AWT =82 ms

. Average Waiting Time = 8.2 ms
Now,

Averagé Turnaround Time for

Py,=6+10=16ms
P,=0+1 =1ms
P;=16+2=18 ms
P,=18+1=19ms
Ps=1+5 =6ms

P, +P,+P3; + P, +Ps

ATT

5
_16+1+18+19+6
5
_80
5
ATT =12 ms

.. Average Turnaround Time = 12 ms

4.4 Round Robin Scheduling Algorithm

This algorithm is similar to FCFS scheduling, but preemptive is added to switch between processes.

A small unit of time, called a time quantum, or time slice is defined.

41
4

The ready queue is treated as a circular queue.
New processes are added to the tail of the ready queue.

The CPU scheduler picks the first process from the ready queue sets
a timer to interrupt after one time quantum and dispatches the
process.

One of the two things will then happen

1. The process may have a CPU burst time of less than one time
quantum. In this case, the process itself will release the CPU
voluntarily.

The scheduler will then proceed to the next process in the ready queue.

ii. Otherwise, if the CPU burst of the currently running process is longer than one time quantum.
The timer will go off and will cause an interrupt to the operating system.

A context switch will be executed and the process will be put at the tail of the ready queue.
The CPU scheduler will then select the next process in the ready queue.

The average waiting time under the Round Robin policy is often quite long. This algorithm is
preemptive algorithm.

Time Shot

In operating system time shot/time slice
Or "time quantum”, "quantum" is the period of time for
which a process is allowed to run uninterrupted in a pre-emptive

multitasking operating system.
Examples

1. Preemptive for Round Robin (RR) algorithm

Solution

Consider the above set of processes that arrive at time 0 with the length of the CPU burst given in
milliseconds. ’

If we use time quantum/time slice of 4 ms

i.e. time slice/quantum = 4 ms

Then process P, gets the first 4 ms since it requires another 20 ms, it is preempted after the first time
slice and the CPU is given to the next process in the queue process P,.

Process P, does not need 4 ms, so it quits before time slice expires.

The CPU is then given to the next process P;. Once each process has received 1 time slice, the CPU
is returned to the process P, for an additional time slice.

The resulting RR (Round Robin) schedule is as follows

Gantt Chart

Py P> Ps P4 P4 P4 P4 P4

0 4 7 10 14 18 22 26 30
Lets,

Calculate the average Waiting Time for
Pi=10-4=6ms

P, =4 ms
P3 =7 ms
L . P, +P2+P3
Average Waiting Time = 3
_6+4+7 17
B 3 T3
=5.66 ms

Average Waiting Time = 5.66 ms

Now, lets calculate the average turnaround time
P;=6+24=30ms

P,=4+3=7ms -

P;,=7+3=10ms

30+7+10 47
ATT = 3 =73

=15.6 ms

.. Average Turnaround Time = 15.6 ms

‘?—‘Z Note: Time slice\Time quantum - It is the largest amount of CPU time any program can
consume when scheduled to execute on the CPU. |

4.5 Multilevel Queues

Another class of scheduling algorithms has been created for
situations in which jobs are easily classified into different groups.

Example: common division is made between foreground
(Interactive) jobs and background (Batch) jobs.

A multilevel queue scheduling algorithm partitions the ready queue in separate queues. Jobs are
permanently assigned to one queue generally based on some property of the job like memory size or
job type, etc. each queue has its own scheduling algorithm.

In addition, there must be scheduling between the queues. This is commonly fixed priority
preemptive scheduling. For example: Foreground queue may have absolute priority over the
background queue. v

For example: A multi-queue scheduling can have following queues:

i. System jobs

ii. Interactive programs

iii. Interactive editing

iv. Batch jobs

V. Student jobs

Each queue has absolute priority over lower priority queues. No job in the batch queue, for example,
can execute unless queues for the system jobs, interactive jobs, and interactive editing are empty

(figure 4.2).

et System tasks >
— Interactive >
s Editing B
— Batch EEE—
—] Students >

Figure 4.2: Multi level queue scheduling

Multi Level Feedback Queues

Normally, in a multi queue scheduling algorithm, jobs are
permanently assigned to a queue upon entry to the system. Jobs do
not move between queues.

Multilevel feedback queue however, allow a job to move between
queues. The idea is that if a job uses too much of CPU time, it will
be moved to a lower priority queue.

Similarly a job which waits too long in a lower-priority queue it may be
moved to a higher priority queue.

For example: Consider a multilevel feedback queue scheduler with 3
queues, numbered from 0 to 2. The scheduler first executes all jobs in

queue 0.

A job entering the ready queue is put in queue 0. A job in queue 0 is given a time quantum of 8
milliseconds. If it does not finish within this time, it is moved to the tail of queue 1. If queue 0 is
empty, the job at the head of queue 1 is given a quantum of 16 milliseconds. If it does not complete,
it is preempted and put into queue 2. Jobs in queues are executed FCFS only when, Queue 0 and 1

are empty (figure 4.3).

—_— Qa8

f——

»)

('QH’UTF'B

>

D

T =

v

Figure 4.3: Multilevel feedback queue

5. Operation System Examples

The scheduling algorithms (policies) used by the Solaris, Windows XP, Window 2000 and Linux

operating system are

1. Solaris scheduling: Solaris uses priority based thread scheduling where each thread belongs

to one of the six classes
a. Time sharing (TS)

e o o

Interactive (IA)

Real time (RT)

System (Sys)

Far Systems Source (FSS)
Fixed Priority (FP)

W1th1n each class there are different priorities and different scheduling algorithms.

The default scheduling class for a process is time sharing.

Windows XP scheduling/Windows 2000 scheduling: Window XP schedules threads using a
priority based, preemptive scheduling algorithm.

The windows XP scheduler ensures that the highest priority thread will always run. The
portion of the windows XP Kernel that handles scheduling is called the dispatcher.

A thread selected to run by the dispatcher will run until it is preempted by a higher priority
thread, until it terminates, until its time quantum ends, or until it calls a blocking system call,
such as for I/O.

Linux scheduling: Linux scheduler provides two separate process scheduling algorithms.
They are

a. Time sharing algorithm for fair preemptive scheduling among multiple processes and

b. Other is designed for real time tasks where absolute priorities are more important than
fairness. Linux allows only process running in user mode to be preempted.

Solved Examples

1. Calculate Average Turn Around Time and Average
Waiting Time for all set of processes using Non-pre-
emptive Priority:

Solution

Given

P4 8 2 2
P2 5 1 1(high)
Ps 4 0 3
P4 3 3 4

Gantt chart

P, P Ps Py
0 5 13 17 20
Average waiting time
Py =5
P, =0
P =13
Py =17

_ 35/4 = 8.75 m/sec
Average turn around time = Burst time + Waiting time

Pi= 8+5 = 13
Po= 5+0 = 5
Ps= 4+13 = 17
Ps= 3+17 = 20

» 55/4 =13.75m/s
- Average turnaround time = 13.75 m/sec.

2. Calculate Average Turn Around Time and Average
Waiting Time for all set of processes using SJF.

= IBIN|W

NIWINO

Solution

Step 2: Drawing Gantt chart

Ps | Py P2 Py

P4

14

Step 3: Calculating Average turnaround time and Average waiting time.
Average waiting time

P =686
P =3
P =1
Ps =10
Ps =0

_ 20/5 =4 m/sec
Average waiting time= 4 m/sec
Average turn around time = Waiting time + Burst time

Pi= 6+4= 10
P,= 3+3= 6
P3= 1+2= 3

Ps= 10+4= 14
Ps= 01+0= 01 ,
34/5 6.8 m/sec

. Average turnaround time = 6.8 m/sec.

3. Calculate Average Turn Around Time and Average
Waiting Time for all set of processes using FCFS:

Process | Burst time | Arrival time
P1 5 1
P2 6 0
P3 2 2
P4 4 0
Solution
Given
Process | Burst time | Arrival time
P4 5 1
P2 6 0
P3 2 2
P4 4 0
Gantt chart by applying FCFS
P2 Ps P P3
» 0 6 10 15 17
Waiting Time: P, = 10
P2 =0
P;= 15

P, = 06

Pi+P+Ps+P 10+0+15+06 31

Average Waiting Time = 2 = 2 vy
=7.75 units

Turn Around Time: P; = 15

P2 = 6

P3 = 17

P4 = 10

15+6+17+10 4

Average Turn Around Time = S 2 = 78 =12

oo ATT = 12,AWT =7.75

4. Consider the following set of processes:
Process CPU Burst Time (in milliseconds)

P, 30
P2 6
Ps3 8

Calculate the Average Waiting Time and Average Turnaround time by using Round
Robin CPU Scheduling Algorithm. (The time quantum is of 5 milliseconds)

Solution
Given
Process CPU Burst Time (in milliseconds)
P1 30
P2 6
P3 8
Round Robin CPU scheduling Algorithm with time quantum of 5 ms.
I N > P [P |op | op]
0 5 10 15 _ 20 21 24 ’ 44

Let’s, calculate AWT for
P=0+(15-5+(24-20)=10+4=14ms
P,=5+20-10)=5+10=15ms
P;=10+(21-15)=10+6=16 ms

Pi+Py+P3s 14+15+16 45
. AWT = — 32 2 3 =2 =15 ms.

Calculate ATT

AWT + Brust time

ATT = No. of processes
“Pr= 14+30=44
P, = 15+6=21
P; = 16+8=24
+21+
| ATT - 2028
= 29.6 ms.
5. Calculate Average Turnaround Time and Average
- Waiting Time for algorithm using Non-preemptive SJF.
Process Burst Time Arrival Time
P4 8 0
P. 4 1
Ps3 9 , 2
Py 5 3
Solution
Process Burst Time Arrival Time
P4 8 0
P2 4 1
P3 9 2
P4 5 . 3
Gantt chart
L P | P [P | P]
0 4 9 17 26
Average waiting time
Py = 9
Py = 0
Ps= 17
P4 = 4

" 30/4=75mfsec

Arrange turnaround time = Arrange time — Burst time

P1=9-8= 1
P2=0-4= 4
P;=17-9= 8
Pi=4-5= __1__

14 /4 = 3.5 m/sec

scheduled to execute on the CPU

SUMMARY

The main objective of multiprogramming is to have some process running at all times in order to
maximize CPU.

Short-term scheduler/CPU scheduler: Whenever the CPU becomes idle, the operating system must
select one of the processes in the ready queue to be executed. The part of the operating system which
carries out this selection process is called as short-term scheduler or CPU scheduler.

Non-preemptive scheduling: With non-preemptive case, once CPU is given to a particular process, it
will not release the CPU tili to CPU burst time is over.

Preemptive scheduling: The strategy of allowing processes that are logically runnable to be temporarily
suspended is called preemptive scheduling and it is contrast to the run to completion method.
Dispatcher: The dispatcher is @ module that gives control of the CPU to process selected by CPU
scheduler.

Dispatch latencing: The time it takes for the dispatcher to stop one process and start another running is
known as the dispatch latencing.

Throughput: The number of processes that are completed per time unit is calied throughput and it
should be maximum. ;

Turnaround time: The interval from the time is submission of a process to the time of completion of a
process is called turnaround time and it should be minimum.

Waiting time: Waiting time is the period spent waiting in the ready queue it should be minimum.
Response time: It is the time from the submission of a request until the first response is produced.

The CPU scheduling deals with the probiem of deciding which of the processes in the ready queue is to
be allocated to the CPU.

CPU uses many different CPU scheduling algorithms such as

a. FCFS b. SJFS

c. RR d. Priority based scheduling

e. Muitilevel feedback queue f. Multilevel queue

The examples of operating system when uses different CPU scheduling algorithms are

a. Solaris: It uses priority based scheduling algorithm.

b. Windows XP/Windows 2000: It uses priority based, preemptive scheduling algorithm.
c. Linux: 1t uses two types of CPU scheduling algorithms

i Time sharing algorithm for fair preemptive scheduling among multiple processes.
ii. Real time tasks where absolute priorities are more important than fairness.
Time quantum/ Time slice: It is the largest amount of CPU time any program can consume when

2 Marks
I————W vl 1. Define the term time shot.
AbrA542 - 1 2. What do you mean by pre-emptive scheduling?
[Bpr-1512 - 7M] 3. Round Robin algorithm is non-preemptive comment and justify.
[Apr.2015 — 1M 4. Define Burst Time.
[Oct.14,Apr.13 — 2M] 5. Define the term Turn-Around Time.
[Oct.2014 — 2M] 6. Define Dispatch latency.

7. What is the function of Dispatcher? [Oct.2012 - 2M)]
8. What is meant by Throughput? [Oct.2012 — 2M]
9. Define Waiting Time. [Apr.2012 — 2M]
10. Define the term Dispatcher. [Oct.2011 - 2M]
11. What do you mean by Waiting Time? [Oct.2011 — 2M)]
12. What do you mean by Turnaround Time? [Apr.2011 — 2M]
4 Marks
1. Explain the working of priority scheduling. - [Oct.2015 — 4M]
Consider the following set of processes with the length of CPO
Burst time and arrival time given in milliseconds: [Oct.2015 — 4M]
P 4 1
P, 2 0
P 3 3
P, 5 2
Ps 7 2

Calculate turn around time, waiting time, average waiting time

and average turn around time using FCFS algorithm.

Explain multilevel feedback queue algorithm. [Apr2015 — 4M]

4. Consider the following set of processes with the length of CPU [Apr2015 — 4M
Burst time and arrival time. '

w

N BN w

13
Calculate Turn around time, waiting time, Average waiting
time and Average turn around time using Round Robin
Algorithm with time quantum = 2.

5. List and explain scheduling criteria. » [Oct.2014 — 4M]
6. Calculate Turn Around Time, Average Turn Around time,
waiting time and average waiting time for all set of processes [Oct.2014 — 4M]

using SJF (Shortest Job First).Non Preemptive algorithm.

[Oct.2014 — 4M]

7. Explain short term scheduler.

[Apr.2013 — 4M]

[Apr.2013 ~ 4M]

[Oct. 12,11 — 4M]
[Oct.2012 — 4M]

[Apr.2012 — 4M]

[Apr.2012 — 4M]

[Oct.2011 - 4M]

[Oct.2011 — 4M]
- [Oct.2011 - 4M]

10.

12.

13.

14.

15.
16.

Calculate Average Turn Around Time and Average Waiting Time
for all set of processes using Non-pre-emptive Priority:

Process | Burst Time [Arrival Time | Priority

Py 8 2 2

P> 5 1 1(high)

Ps 4 0 3

Py 3 3 4
What do you mean by Processor Share in case of Round-Robin
Scheduling?
Differentiate between the Preemptive and Non-preemptive
Scheduling.

Calculate Average Turn Around Time and Average Waiting Time
for all set of processes using SJF.

Process Burst time Arrival time
P, 4 1
P, 3 0
P 2 2
P, 4 3
Ps 1 2

Explain Multilevel Feedback Queue Scheduling Algorithm in
detail.
Calculate Average Turn Around Time and Average Waiting Time

for all set of processes using FCFS:
Process | Burst time | Arrival time
P1 5 1
P2 6 0
P3 2 2
P4 4 0

Consider the following set of processes:
Process CPU Burst Time (in milliseconds)

P4 30
P2 6
Ps 8

Calculate the Average Waiting Time and Average Turnaround
time by using Round Robin CPU Scheduling Algorithm. (The
time quantum is of 5 milliseconds)

What is CPU Scheduler? State the criteria of CPU Scheduling

A disk drive has 540 cylinders numbered 0-539. The drive is
currently serving the request at cylinder 54. The queue is in
order:98,183, 47, 125, 10, 126, 380, 200, 79.Starting from the
current head position what is the total distance that the disk arm
moves to satisfy all the pending request for the following Disk
Scheduling Algorithm?

i FCFS ii. SCAN

(5
uitidh

Chapter 5
PROCESS

SYNCHRONIZATION

1. I»ntroduction

A co-operating process is one that can affect or be affected by other processes executing in the
system. The co-operating processes may either directly share code and data or be allowed to share
data only through files or messages.

If more than one processes are allowed to access the same set of data concurrently, then the
execution of these concurrent processes might leave the data incorrect. Such a situation where
several processes access and manipulate the same data concurrently and the outcome of the
execution depends on the particular order in which the access takes place is called as a race
condition.

To guard against race condition, we must ensure that only one process at a time can be mampulatmg
the data which is commonly used.

For this, some kind of synchronization of the processes is required, such situations occur frequently
in operating systems as different parts of the system manipulate resources and we want that changes
should not interfere with one another.

2. Interprocess Communication

Very often processes may need to communicate and may need to use a shared resource. This
resource can be a Software (S/W) resource such as a file a global variable etc or can be a Hardware
(H/W) resource such as printer or tape drive.

Race Condition

Situations where two or more processes are reading or writing some shared data and the final result
depends on who runs precisely when, are called race condition.

To avoid race conditions, we have to find some way to prohibit more than one process from reading
and writing the shared data at the same time we need mutual exclusion some way of making sure that
if one process is using a shared variable or file, the other process will be excluded from doing the
same thing.

The part of the program where the shared memory is accessed is called the critical section or
critical region. '

To avoid race conditions following four conditions must hold

i. No two processes may be simultaneously inside their critical sections.

ii. No assumptions may be made about speeds or the number of CPU’s.

iii. No process running outside its critical section may block other processes.

iv. No process should have to wait for over to enter its critical section.

3. Critical Section Problem

Consider a system consisting of n cooperating processes
{P1, P2, P3, . . ., Pn}. Each process has a segment of code called the
critical section in which the process may be reading common
variables, updating a common table, writing a common file and so

on.

The important feature of the system is that when one process is executing in its critical section, no
other process is to be allowed to execute in its critical section. Thus the execution of critical sections
by the process is mutually exclusive in time. The critical section problem is to design a protocol
which the processes may use to cooperate. Each process must request permission to enter its critical
section. The section of code implementing this request is the entry section. The critical section may
be followed by an exit section and the remaining code is the remainder section.

A solution to the critical section problem must satisfy the following

requirements:

1. Mutual exclusion: If process P; is executing in its critical
section then no other process can be executing in its critical
section.

2. Progress: If no process is executing in its critical section and
there exists some processes that wish to enter in the critical
section, then only those processes that are not executing in"
their remainder section can participate in the decision as to
who will enter in the critical section next, and this section
- cannot be postponed indefinitely.

3. Bounded waiting: There must exist a bound on the number of
times that other processes are allowed to enter their critical
sections, after a process has made a request to enter its critical
section and before that request is granted.

We shall try to find solution to the critical section problem that
satisfy these three requirements.

While constructing an algorithm a typical process p; is considered to be similar as shown in
figure 5.1.

do {
lentry section]

critical section;

[exit section]

remainder section;
} while (1) ;

Figure 5.1: General structure of a typical process P,

4.

Semaphores

In 1965, E.W. Dijkstra suggested using an integer variable to count
the number of wake ups saved for future use. In his proposal, a new
variable type, called a semaphore was introduced.

A semaphore would have the value few indicating that no wake ups
were saved, or some positive value of one or more wake ups were
pending.

Checking the value changing it, and possibly going to sleep is all done as a single, indivisible atomic
action.

It is guaranteed that once a semaphore operation has started, no other process can access the
semaphore until the operation has completed or blocked. This atomicity is absolutely essential for
solving synchronization problems and avoiding race conditions.

Dijkstra proposed having two operations

1.

Down: This operation decrements the value of the semaphore addressed if it is greater than
ZEeTo.

Up: This operation increments the value of the semaphore addressed.

A semaphore is a synchronization tool used to deal with the critical section on the mutual
exclusion problem.

In general, a semaphores is an integer variable apart from initialization can be accessed only
through two standard atomic operations P and V.

P is called as ‘wait’ and ‘V’ is called as ‘signal’.
The definition of P and V is as follows:

wait (s)/P(g):while & £ 0 do skip;
s:= s-1;
signal(s)/ V(s): s:= g+1;

Semaphore can be used in dealing with the n-process critical section problem. The n process
share a common semaphore ‘mutex’ initialized to 1.

Each process P; is organized as follows:

repeat
p (mutex) ;
critical section
v (mutex)
remainder section
while false

—@

Types of Semaphore

There are two types of semaphore

i Counting semaphore: The semaphore described above is
known as ‘Counting semaphore’, since its integer value may
range over an unrestricted domain. .

ii. Binary semaphore: It is a semaphore with an integer value
that can range only between 0 and 1. It can be simple to
implement than a counting semaphore.

4.1 Usage

Semaphores can be used to tackle the n process critical section problem. The n process share a
semaphore called ‘mutex’ which is initialized to 1. Each process p; is organized as shown in
figure 5.2.

do {

(wait (mutex) ;]
critical section;

Isignal (mutex) ;]|

remainder section;
} while (1) ;

Figure 5.2: Mutual exclusion implemented with semaphores

Semaphores can also be used to solve various synchronization problems. For example: Consider two
concurrently running processes, p; with a statement s, and p, with a statement s,. Suppose we require
that s, be executed only after s;.

We can do this by letting p; and p, share a common semaphore ‘synch’, which is initialized to 0 and
by inserting the statements.

Sq7

signal (synch) ;

In the process p; and the statements

wait (synch) ;

Sa;

In process p,, because synch is initialized to 0, p, will execute s, only after p, has invoked signal
(synch) which is after s;.

4.2 Implementation

The main disadvantage of above scheme is that they all require busy waiting i.e. while a process is in
critical section, any other process which tries to enter the critical section, must continuously loop in
its entry code. This wastes CPU’s cycles, which otherwise could have been used by some other

process for some productive work.

To solve this problem, we must modify the definition of ‘wait’ and ‘signal’ semaphore operations.
When a process executes the wait operation, it must block itself. The block operation places the
process into a waiting queue associated with the semaphore. The process which is blocked, waiting
on a semaphore S should be restarted when some other process executes a ‘signal’ operation. This is
done by a ‘wake up’ operation, which changes the process from the waiting state to the ready state.
The process is then placed in the ready queue. Such semaphores are also called as a ‘spinlock’.

Here a semaphore is defined as:

typedef struct
{

int value;

struct process *L;
} semaphore;

Each semaphore has an integer value and a list of processes. When a process must wait on a
semaphore, it is added to the list of processes. A signal operation removes one process from the list and

awakens that process.

The ‘wait’ semaphore operation can now be defined as:

vold wait (semaphore g)

{

s.value - —;
1f (s.value < 0)

{
add this process to S.L;

block () ;
}
}

A signal operation can be defined as:
void signal (semaphore s)

{

s.value ++;

if (s.value <=0)

{
remove a process p from s.L;
wakeup (p) ;

4.3 Deadlock and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where two or
more processes are waiting indefinitely for an event that can be caused only by one of the waiting
process. Here we say that the processes are deadlocked.

For example: Consider two processes pp and p; which are executing simultaneously and using the
semaphores S and Q, set to value 1 if the statements in p, and p; are executed in the following
sequence:

Po Pt
Wait (S)
Wait (Q)
Wait (Q)
: Wait (S)
Signal (S) Signal (S)
Signal (Q) Signal (Q)

Here p, executes wait (S) then p; executes wait (Q), now when py tries to execute wait (Q), it must
wait until p, executes signal (Q). Similarly, when p, executes wait (S), it must wait until p, executes
signal (S). Thus each process is waiting for the other to proceed and they are deadlocked.

Another problem related to deadlock is indefinite blocking a saturation or starilation, where a process
waits indefinitely within a semaphore.

4.4 Binary Semaphores

- The semaphore described above is known as counting semaphore, since its integer value may range
over an unrestricted domain. A binary semaphore is a semaphore with an integer value that can range

only between 0 and 1. A binary semaphore can be simple to implement than a counting semaphore.
We now show, how a counting semaphore can be implemented using a binary semaphore.

Let S be a counting semaphore. To implement it in terms of binary semaphores, we need the
following data structure:

Binary_semaphore s;,8;;

int c;
Initially s; = 1, s, = 0 and value of ¢ is set to the initial value of counting semaphore S.

The wait operation on the counting semaphore S can be implemented as follows:

wait(s,);
C——;
1f(c<0){ signal(s,);
wait(s;);
}

signal (s;);

The signal operation on the counting semaphore S can be implemented as follows:

walt(sq);
CH+; ;
if (c<=0)
signal (s;) ;
else
signal (s4);

5. Monitors

To make it easier to write correct programs, Hoare (1974) and Brinch Hansen (1975) proposed a
higher level synchronization primitive called a Monitor.

A monitor is a collection of procedures, variables and data structures that are all grouped together in
a spiral kind of module or package.

Processes may call the procedures in a monitor whenever they want to, but they cannot directly
access the monitors internal data structures from procedures declared outside the monitor.

Monitors have an important property that makes them useful for achieving mutual exclusion only
one process can be active in a monitor at any instant. typically, when a process calls a monitor
procedure the first few instructions of the procedure will check to see of any other process is
currently active within the monitor.

If so, the calling process will be suspended until the other process has left the monitor.

If no other process is using the monitor, the calling process may enter.

6. Classical Problems of Synchronization

In this section, a couple of different synchronization problems as an example for a large class of
concurrency control problems are presented.

6.1 The Bounded Buffer Problem

We have a producer process and a consumer process. The producer process produces information
that is consumed by a consumer process. The bounded buffer producer consumer problem assumes a
fixed buffer size. In this case, the consumer must wait if the buffer is empty and the producer must
wait if the buffer is full.

Here, we assume that the pool consists of n buffers, each capable of holding one item. The mutex
semaphore provides mutual exclusion for accesses to the buffer pool is initialized to the value 1. The
‘empty’ and ‘full’ semaphore count the number of empty and full buffers respectively.
The semaphore ‘empty’ is initialized to the value n, the semaphore ‘full’ is initialized to the value 0.

The code for the producer process is as below:

do
{

produce an item in next p

wait (empty) ;
walt (mutex) ;

add next p to buffer

signal (mutex) ;
signal (full);
} while (1);

The code for the consumer process is as shown below:

“do

{
wait (full);
wait (mutex) ;

remove an item from buffer to next ¢

signal (mutex) ;
signal (empty) ;

consume the item in next c

} while (1);

We can interpret this code as the producer producing full buffers for the consumer or as the
consumer producing empty buffers for the producer.

6.2 Readers and Writers Problem

An object (for example: a file or record) is to be shared among several concurrent processes. Some
processes want to only read the data object such processes are called reader process. Some other
processes may want to update the shared object. Such processes are called writers. If more than one
reader processes access the object simultaneously then there is no problem. But if two writer process
want to access the object simultaneously then it might result in a problem. To ensure that these
difficulties do not arise, we require that the writers have exclusive access to the shared object.
This problem is referred to as ‘Readers Writers’ problem.

A variation in the readers writers problem is the first readers-writers problem, it requires that no
readers will be kept waiting unless a writer has already obtained permission to use the shared object.
In other words, no reader should wait for other readers to finish simply because a writer is waiting.

In the solution to the first readers writers problem, the reader process share the following data
structures

semaphore mutex, wrt;
int readcount;

The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0. The semaphore wrt
is common to both the reader and writer processes. The mutex semaphore is used to ensure mutual
exclusion when variable readcount is updated, it keeps track of how many processes are currently
reading the object. '

The semaphore wrt functions as a mutual exclusion semaphore for the writers. It is used by 1* or last
reader that enters or exits its critical section. It is not used by readers who enter or exits while other
readers are in their critical sections.

The code for a writer process is as below:

wailt (mutex) ;

readcount ++;

if (readcount == 1)
wait(wrt);

signal (mutex) ;

reading is performed

wait (mutex) ;

readcount --;

1f (readcount == 0)
signal (wrt) ;

signal (mutex) ;

Here if writer is in critical section and n readers are waiting, then one reader is queued on wrt,
and n — 1 readers are queued on mutex. When a writer executes signal (wrt), we may resume
execution of the waiting readers or a single waiting writer.

6.3 Dining Philosophers Problem

There are five philosophers who spend their life in thinking and
eating. They share a common circular table and 5 chairs, each
belonging to one philosopher. In the centre of the table there is a
bowl of rice and the table is laid with 5 single chopsticks
(figure 5.3). When a philosopher thinks, she does not interact with
her colleagues, from time to time a philosopher gets hungry and
picks up 2 chopsticks that are closer to her. A philosopher may pick
up only one chopstick at a time.

When hungry and having both the chopsticks, she eats without releasing her chopsticks. When she
finishes eating, she puts down both the chopsticks and starts thinking.

One simple solution is to represent each chopstick by a semaphore. A philosopher tries to grab the
chopstick, executing a wait operation on'that semaphore, she releases her chopsticks by executing
the signal operation on the appropriate semaphore. Thus the shared data are

semaphore chopstick [5];

where all the elements of chopstick are initialized to 1. The structure of philosopher i is as shown
below:

do
{
walt (chopstick{i});
wailt (chopstick [(i+1)%5]);
eat;

signal (chopstick[il]);
signal (chopstick[(i+1)%5]) ;

think;

} while (1);

Although it guarantees that no two neighbours are eating simultaneously. It must be rejected
because it has a possibility of creating a deadlock. Suppose that all five philosophers became hungry
and grab 1 chopstick each. To ensure that there is no deadlock. We must

1. Allow at most four philosophers to be sitting simultaneously at the table.
ii. Allow a philosopher to pick up her chopstick only if both chopsticks are available.

OR

Use an asymmetric solution i.e. an odd philosopher picks up first her left chopstick and then
her right chopstick, an even philosopher pick up her right chopstick and then her left
chopstick.

Figure 5.3: The situation of the dinning - philosopher

SUMMARY

Race conditions: Situations where two or more processes are reading or writing some shared data and
the final result depends on who runs precisely when, are called race conditions.

Critical section/ region: The part of the program where the shared memory is accessed is called the
critical region or critical section.

A semaphore is a synchronization tool used to deal with the critical section on the mutual exclusion
problem.

To make it easier to write correct program Moare and Brench Husen proposed a higher level
synchronization primitive called a monitor.

Mbhitor: A monitor is a collection of brocedures variables and data structures that are all grouped
together in a spiral kind of module or package.

The classic problems of synchronization can be solved using the following techniques

a. Bounded buffer problem
b. - Readers writers problem
c. Dining philosophers problem

Binary semaphore: A binary semaphore is a semaphore with an integer value that can range only
between 0 and 1.

PU Questions

[0ct.2015 — 2M] 1. Define semaphore.
[Apr.15.13.12 - 2M] 2. What is Semaphore?
[Oct.2012 — 2M] 3. Define the term Critical Section.
[Oct.2015 - 4M] 1 Explain the critical section problem in detail.

[Oct.2015 — 4M] 2. Explain in detail Dining-Philosopher Problem.
[Apr.2015 - 4M] 3. Explain the Reader’s writer’s problem which is a classic
problem of synchronization.

[Oct.2014 - 4M] 4. Define semaphores. List its types. Explain any one in detail.

[Apr.2013 — 4M] 5. What is Critical Section Problem? Explain the following term
in the context of it:
1. Mutual Exclusion
il Progress
iii. Bounded Wait

[Oct.2012 — 4M] 6. What is Semaphore? List and explain different types of the
Semaphores.

[Oct.12,11 — 4M] 7. Describe in detail the “Dining Philosopher Problem”
Synchronization Problem.

[Apr.2012 — 4M] 8. What is Critical Section Problem? Which requirement must be
satisfied by solution to the Critical Section?

[Oct.11.Apr.11 - 4M] 9. Write a short note on Semaphores.
[Apr.2011 — 4M] 10. Explain bounded buffer problem in detail with the help of

suitable example.

(/o
VISION

Chapter 6
DEADLOCKS

1. Introduction

In a multiprogramming environment several processes may compete for a finite number of resources.
A process requests resources if the resources are not available at that time, the process enters a
waiting state. It may happen that waiting processes will never again change state, because the
resources they have requested are held by other waiting processes. This unfortunate situation is
called a deadlock. '

Deadlock can be defined formally as follows:

‘A set of processes is deadlocked if each process in the set is waiting
Jfor an event that only other process in the set can cause’.

2. System Model

A system consists of a finite number of resources to be distributed among a number of competing
processes. The resources are partitioned into several types, each of which consists of some number
of identical instances.

Under the normal mode of operation, a process may utilize a resource in only of the following
sequence:

1. Request: If the request cannot be granted immediately.

For example, if the resource is a printer, the process can acquire the resource.
2. Use: The process can operate on the resource.

For example, if the resource is a printer, the process can be print on the printer.

3. Release: The process releases the resources.

A process must request a resource before using it and release the resource after using it. A process
may request as many resources as required to carry out the designated task.

A set of process is in a deadlock state, when every process in the set is waiting for an event that can
only be caused by another in the set. '

3. Deadlock Characterization

A deadlock situation can arise if and only if the following conditions hold simultaneously in a
system.

3.1 Necessary Conditions for Deadlock
Coffiman (1971) showed that four conditions must hold for there to be a deadlock.

1. Mutual exclusion: At least one resource is held in a non-sharable mode, that is only one
process at a time can use the resource.

Hold and wait: There must exist a process that is holding
atleast one resource and is waiting to acquire additional
resources that are currently being held by another process.

3. No preemption: Resources cannot be preempted,
i.e., resource can only be released voluntarily by the person
holding it, after the process has completed its task.

4. Circular wait: There exists a set (po, p1, - - ., pn) of waiting processes such that p, is held by
1. Pn- 1 is waiting for resources which are held by p, and p, is waiting for a resource held
by po. Thus, there must be a circular chain of two or more processes, each of which is waiting
for a resource held by the next number of the chain.

All of these conditions must be present for a deadlock to occur. If one of them is absent, no deadlock
is possible.

4. Resource Allocation Graphs

1. It conéists of the sets P, R and E
1i. Resource instances
ili. Process states

V is partitioned into two types:
i. P={P,P,,....., P}, the set consisting of all the processes in the system.
. R = {Ry, Ry,,, Ry}, the set consisting of all the resources types in the system.

ii. Request edge: A request edge P; —> R, in the resource
allocation graph indicates that process P; may request resource
R; at some time in the future. A request edge is represented by
a dashed line.

Figure 6.1

v, Assignment edge: directed edge R; — P;

A set of vertices V and a set of edges E.

Process for drawing Resource Graph: Resource type with 4 instances P; requests instance of R;.
P; is holding an instance of R;

P;
P
R;
R.

L7 L

Examples,

1. Example of a resource allocation graph

Figure 6.2

ii. Resource allocation graph with a deadlock

Figure 6.3

Basic Facts

i. If graph contains no cycles — no deadlock
it. Ifa graph contains a cycle — deadlock
iii. If only one instance per resource type, then deadlock

iv. If several instances per resource type, possibility of deadlock

5. Safe State

A state is safe if the system can allocate resources to each process
(up to its maximum) in some order and still avoid deadlock.

Formally, we can say, a system is in a safe state only if there exist a safe sequence.

A sequence of processes <Py, P,,.....,P> is a safe sequence for the current allocation state, if for each
P;, the resources that P; can still request can be satisfied by the currently available resources and the
resources held by all the P;, with j <i.

6. Deadlock Prevention

In general, four strategies are used for dealing with deadlocks
1. Just ignore the problem all together.

ii. Deadlock detection and recovery.

iii. Dynémic avoidance by careful resource allocation.

iv. Deadlock prevention, by structurally negating one of the four necessary conditions.

6.1 Just Ignore the Problem all together

Ostrich Algorithm
This is the simplest algorithm. The idea is as follows:
Stick your head in the sand and pretend there is no problem at all.

(For example, Unix operating system uses this algorithm)

6.2 Deadlock Detection

In this technique, the systemn does not attempt to prevent deadlocks
from occurring, instead it lets them occur, tries to detect when this
happens, and then takes some action to recover after the fact.

Deadlock Detection with one resource of each type
Resource graph, In this case, we assume that system might have only one resource of each type.

For such system, we can construct a resource graph. If the graph contains one or more cycles, a
deadlock exists. Any process that is part of the cycle is deadlocked. If no cycles exist, the system is
not deadlocked.

“Consider the éystem with seven processes. A through G and six resources, R through W.

Resource ownership is as follows:

i Process A holds R and wants S

1. Process B wants T

iit. Process C wants S

iv. Process D holds U and wants S and T
v. Process E holds T and wants V

vi. Process F holds W and wants S

vii. Process G holds V and wants U.

Figure 6.4: Resource graph

After detecting a deadlock some way is needed to recover and get the system going again.

6.4

If we can ensure that at least one of the four necessary conditions for
deadlock is never satisfied, then deadlocks will be structurally
impossible.

1.

Recovery from Deadlock

Recovery through preemption: In some cases it may be
possible to temporarily take some resource away from a
process and give it to another process.

In many cases, manual intervention may be required. The ability to take a resource away from
a process, have another process use it, and then give it back without the process noticing is
highly dependent on the nature of the resource. Recovering this way is frequently difficult or
impossible.

Recovery through rollback: System designers can arrange to have processes check pointed
periodically. Check pointing a process means that its state is written to a file, so that it can be
restarted later, along with the resource state that is which processes are currently assigned to
the process.

When a deadlock is detected, it is easy to see which resources are needed. To do the recovery,
a process that runs a needed resource is rolled back to a point in time before it acquired some
other resource by starting one of its earlier check points. In effect, the process is reset to an
earlier moment when it did not have the resource, which is now assigned to one of the
deadlocked processes.

If the restarted process tries to acquire the resource again, it will have to wait until it becomes
available.

Recovery through killing processes: The crudest, but simplest way to break a deadlock is to
kill one or more processes. One possibility is to kill a process in the cycle with a little luck, the
other processes will be able to continue. If this does not help, it can be repeated until the cycle
is broken.

Deadiock Prevention

Attacking the mutual exclusion condition: If no resource
was ever assigned exclusively to a single process we would
never have a deadlock.

By spooling printer output, we can eliminate deadlock for the printer. Unfortunately, this
cannot be applicable for some other resources.

6.5

- Attacking the hold and wait condition: One way to achieve this goal is to require all

processes to request all their resources before starting execution. If everything is available, the
process will be allocated whatever it needs and can run to completion. If one or more
resources are busy, nothing will be allocated and the process would just wait.

An immediate problem with this approach is that many processes do not know how many
resources there will be until they have started running.

Another problem is that resources may not be used optimally.

Some main frame batch systems require the user to list all the resources on the first line of
each job.

The system then acquires all resources immediately, and keeps them until the job finishes
while this method puts a burden on the programmer and wastes resources, it does prevent
deadlocks.

A slightly different way is to require a process requesting a resource to first temporarily
release all the resources it currently holds and then it tries it get everything it needs all at once.

Attacking the no-preemption condition: Attacking this condition is not feasible.

Attacking the circular wait condition: One way is simply to have a rule saying that a
process is entitled only to a single resource at any moment if it needs a second resource, it
must release the first resource. Another way is to provide a global numbering of all the
resources.

Now the rule is, ‘Processes can request resources whenever they want to, but all requests must
be made in numerical order’.

With this rule, the resource allocation graph can never have cycles. A minor variation is to
drop the requirement that resources be acquired in strictly increasing sequence and merely
insist that no process should request a resource lower than what it is already holding.

Deadlock Avoidance By Careful Allocation of
Resource

The main algorithm for deadlock avoidance are based on the concept of ‘safe states’. A state is said
to be safe if it is not deadlocked and there is a way to satisfy all requests currently pending by running
the processes in same order.

An unsafe state is not a deadlocked state because the system can run for a while, Infact, one process
can even complete. The difference between a safe state and an unsafe state is that from a safe state
the system can guarantee that all processes will finish, whereas from an unsafe state, no such
guarantee can be given. :

| 7. Banker’s Algorithm For a Single Resource
A scheduling algorithm that can avoid deadlocks is due to Dijkstra (1965) and is known as the

Banker’s Algorithm.

The Bankers algorithm is thus to consider each request as it occurs and see if granted to a safe state.
If it does, the request is granted otherwise, it is postponed until later.

8. Banker’s Algorithm for Multiple Resources

The algorithm for checking to see if a state is safe can now be stated as follows

1. Look for a row R, whose unmet resource needs are all smaller than or equal to A. If no such
row exists, the system will eventually deadlock since no process can run to completion.

2. Assume the process of the row chosen requests all the resources it needs (which is guaranteed
to be possible) and finishes. Mark that process as terminated and add all its resources to the A
vector.

3. Repeat steps 1 and 2 until either all processes are marked terminated, in which case the ended

state was safe, or until a deadlock occurs, in which case it was not.

The above algorithm uses three vectors E, P and A to denote existing, possessed and available
respectively.

Although in theory the algorithm is wonderful, in practice it is essentially useless because processes
rarely know in advance what their maximum resource needs will be. In addition, the number of
processes is not fixed, but dynamically varying as new users login and logout. Furthermore,
resources that were thought to be available can suddenly vanish.

9. Process Termination

In order to avoid deadlock by killing a process two methods can be used

‘ 1. Kill all deadlocked process: This type will surely break the deadlock but at a great expense,
some of the processes may have computed for a long period of time and will have to be started
again.

Kill one process at a time until the deadlock cycle is eliminated: In this method, it requires
considerable overhead, since after each process is killed a deadlock detection algorithm must
be invoked to determine if any process is still deadlocked.

"Even when we decide to kill some process, which process should be chosen, can be decided

using one of the following criteria.

i. Priority of the process

ii. How many processes will be involved in rollback?

iii. Resources the process needs in order to complete.

iv. How many and what type of resources the process has used?

v. How long the process has computed and how much longer the process will compute?

10. Resource Preemption

In order, to eliminate deadlocks by using resource preemption, we
successively preempt some resources from process and give these
resources to other process until the deadlock cycle is broken.

Following issues need to be addressed

1. Selecting a victim: Which resources and which processes are
to be preempted? We must determine the order of preemption
in order to minimize the lost.

2. Roll back: If we preempt a resource from a process what
should be done with that process? It cannot continue with its
normal execution if it is missing some needed resource.

We must rollback the process to some safe state and restart it from that state. The simplest
solution is a total rollback, about the process and restart it. However, it is more effective to
rollback the process only, as far as necessary to break the deadlock. This method however
requires the system to keep more information about the state of all the running processes.

Starvation: How do we ensure that starvation will not occur? i.e. how can we guarantee that
resources will not always be preempted from same process.

Solved Examples

1. Consider the following snapshet of a system:
Process | Allocation | Max | Available

ABC ABC ABC

Po 232 975 332

P4 400 522

P2 504 1104

Ps 433 444

P4 224 655

Answer the following questions using Banker’s Algorithm:
i. What is the content of Need Matrix?

ii. Is the system in a Safe State? If yes, give the safe sequence.

Solution
Given:

i. Given 5 processes

ABC | ABC | ABC
Po 232 975 | 332
P 400 522
P, 504 |1104
P, 433 444
P. 224 655

P =‘ {PO: P19 P2’ P37 P4}
Resources type = {A, B, C}

Allocation matrix and max as follows:

ABC ABC
Po 233 975
P4 400 522
P2 504 1104
P3 433 444
P4 224 655

Total instances of each resource type is given {3, 14, 12}

.. Available resources = Total instance — Allocation

={3, 14,12} - {3, 3, 2}
Available = {0, 11, 10}

Need matrix
Need[i][i] = Max[i] [j] — Allocation [i][j]

il.

&

Hlolo|-jm(>

wl=lov|a|m

A IOINIWIO

a. Initialize ‘Finish’ = (F) for all processes
- finish []= {F, F, F}
b. Work = available = {0, 11, 10}

fori=0

If(finish i) = false &&(needi < work)
finish=F &&(6, 4,3 <0,11,10)

= false

" {Po cannot be granted}

. the system is not in a safe state.

Consider the system with 5 process P = {Py, P, P,, Ps, Py}
and four resources type {A, B, C, D}. There are 3 instances
of type A, 10 instances of type B, 15 instances of type C

and 7 instances of type D.
The allocation and Maximum demand matrix are as follows:

Allocation MAX

A|B|[C|D A|B|[C|D
Po O]1121]1 Po |0 |8 (4|4
Pirjioj112]1 Pi|O0 |6 ([5]|2
Pi1/0f{01l0 P, 11161{411
P3|1(3]5]3 Ps (23|75
Ps {004]1 Ps,{0|5]|5]|7

Answer the following question using Bankers Algorithm:
i Is the system in a Safe State?

ii. If arequest from process P, arrives for (0, 2, 0, 2) can it be granted.

Solution

Step 1: Total instances of each resource type is given {3, 10, 15, 7}

.. Available resources = Total instance — Allocation
={3,10,15,7} - {2,5, 13,6} -
={1,5,2,1}

Step 2: To check safe state
Calculate Need [i] [j] = Max [i]{j] — Allocation [i]{j]

= Need
AlB|CI|D
Pe |07 (2|3
P10 |5 |31
P10 |6 |41
P3| 1]012]|2
Ps|O0|511]|6

Step 3: Initialise ‘Finish’ = (F) for all processes
. finish []={F,F,F, F, F}
Step 4: Work = available = {1, §5, 2, 1}
a. Fori=0
If (Finish [i] = False && need; < work)
Finish=F && (0,7,2,3<1,5,2,1)=True.
.. Py can be granted.
Releasing resources by Py, work will update to
Work = Work + Allocation
. Work={1,5,2,1} + {0, 1,2, 1}
Work = {1, 6, 4, 2}
Finish [0] = True
Safe Sequence = {Py}
b. i=1
If Finish; = F && need; < Work
=F&& {0,5,3,1<1,6,4,2}
= True.
.. Py is granted
Work = Work + Allocation,
={1,6,4,2} +{0,1,2,1}
Work = {1,7,6, 3}
Finish [1] = True
Safe Sequence = {Py, P}

c. i=2
If Finish, = F && need, < Work
Finish, = F && {0,6,4,1<1,7,6, 3} = True.

.. P, is granted.
Work = Work + Allocation,
={1,7,6,3,} + {1,0,0, 0}
={2,7,6,3}
Finish {2] = True
Safe Sequence = {Py, P, P,}
d. i=3
If Finish; = F && (need < Work)
Finish; = F && {1,0,2,2<2,7,6, 3} >True.
=, Py is granted. '
Work = Work + Allocation,
- =1{2,7,6,3} +{1,3,5, 3}
={3,10, 11, 6}
Finish [3] = True
Safe Sequence = {P,, Py, P, P3}
e. i=4
If Finish, = F && (need, < Work)
=F&& {0,5,1,6<3,10, 11, 6}
=True.
. P4 is granted
.. Work = Work + Allocation
={3,10,11, 6} + {0,0, 4, 1}
Work = {3, 10, 15, 7}
Finish [4] = True
Safe Sequence = {Py, Py, P, P3, P;}
We can conclude that the system is in safe state.
ii. If arequest from process P, arrives for (0, 2, 0, 2) can the request be granted.
We check

a. Request; < Need;
0,2,0,2)<(0, 5,1, 6)
= False

That means process P, request is not legal. It is asking for more resources it should
demand for. So process P, with new request will not be granted.

3. Consider the system with 5 process P = {P,, P,, P;, P3, P}
and four resources type {A, B, C, D}. There are 3 instances
of type A, 14 instances of type B, 12 instances of type C
and 12 instance of type D.
The allocation and Maximum demand matrix are as follows:

Aliocation Max
A|B|(C|D A|B|C |D
Po| 0|6]|3}2 P, 01652
Ps(O]O0 1|2 P[00} 1]2
P2({1]0]0]|0 P,|1]|7]5|0
P;|11315]|4 P;12|3|56
Ps, {001/ 4 P,.|0| 6|56

Answer the following question using Bankers Algorithm:

i Is the system in a Safe State?
ii. If a request from process P, arrives for (0, 0, 4, 1) can be the request be
immediately granted.

Solution

Given: 5 Process

P = {Py, P}, P, P, P}
Resources of type {A, B, C, D}

Allocation Matrix and Max as follows:

Allocation Max -

A|B|C|D A|B|C|D
Po | O] 6|32 Po{0|6|5]!2
Piiojo0of{1}2 PyjO0|0]|1]2
P21110{0(0 Pj1]7151]0
P3{1]13!5](4 P;{213]5]|6
Ps{O]|O]| 1|4 Ps[0[6]5]|6

i. Is system in safe state.

= Total instances of each resource type is given {3, 14, 12, 12}

L.

2.

-'. Available resources

To check the safe state, 7
Calculate Need [i] [j] = Max [i][j] — Allocation [i][j]

= Need

Initialise ‘Finish’

a.

Total instance — Allocation
{3,14,12,12} - {2,9, 10,12} °
{1,5,2,0}

AIBICID
PojOjO[2]0
PL{O]O]O]O
P,[0]7}i510
P:1110(0]2
P,10[614][2

(F) for all processes

- finish[] = {F,F,F,F,F}
Work = available = {1, 5, 2, 0}
Fori=0
If (Finish [i] = False && need; < work)
- Finish = F&& (O; 0,2,0<1,5,2,0) = True
. Py can be granted.
Releasing resources by Py, work will update to
Work = Work + Allocation,
s Work= {1,5,2,0}+{0,6,3,2} ={1,11,5,2}
Finish [0] = True
Safe Sequence = {P,}
i =1
If Finish; = F && need; < Work
Finish; = F && {0,0,0,0} < {1, 11,5, 2} is True.
- Py is granted
Work = Work + Allocation;
o= {1,11,5,2} +{0,0,1,2} = {1, 11, 6,4}
Finish [1] = True
Safe Sequence = {Po, Py}
i=2
If Finish, = F && need; < Work
Finish, = F&& {0,7,5,0} <{1,11,6,4} = True.

ii.

= P, is granted.
Work

Work + Allocation,
{1,11,6,4,} + {1,0,0,0} = {2,11,6,4}
Finish, = {T}

Safe Sequence = {Py, Py, P2}
d. i =3
If Finishy, = F && need; < Work
Finishy, = F&& {1,0,0,2} <{2,11,6,4} >True.
. Py is granted.
Work = Work + Allocation;
= {2,11,6,4} +{1,3,5,4} = {3, 14, 11, 8}
Finish;;; = {T}
Safe Sequence = {Pg, Py, Py, P3}
e. i = 4
If Finish, = F && need, < Work
Finishy = F&& {0,6,4,2} <{3,14, 11, 8} > True.
. Py is granted

Work = Work + Allocation,
= {3,14,11,8} +{0,0, 1,4} = {3, 14, 12, 12}
Finishyy = {T}
Safe Sequence {Ps, Py, Py, P3, Py}
So Finish [] {T,T,T,T, T}
And Safe Sequence is {Py, Py, P,, P3, P,}
We can conclude that the system is in safe state.

i

If a request from process P, arrives for (0, 0, 4, 1) can the request be immediately
granted.

Check

Request; < Need;

(0,0,4,1)<(0, 6, 4,2) > False

That means process P, request is not legal. It is asking for more resources it should demand
for. So process P, with new request will not be granted.

SUMMARY

A set of processes is deadiocked if each process in the set is waiting for an event that only other process
in the set can cause.
There are four necessary conditions for deadlock:

a. Mutual exclusion condition b. Hold and wait condition
c. No preemption condition d. Circular wait condition
The strategies used for dealing with the deadlock:
a. Just ignore the problem together
b Deadlock detection and recovery
c. Dynamic avoidance by careful resource allocation
d. Deadlock prevention by structurally negating one of the four necessary conditions

A state is said to be safe if it is not deadlocked and there is a way to satisfy all requests currently
pending by running the process in same order.

To eliminate deadlocks by using resource preemption, we successively preempt some resources from
process and give these resources to other process until the deadlock cycle is broken. Following issues
need to be addressed:

a. Selecting a victim

A set of processes is deadlocked if each process in the set is waiting for an event that only other process
in the set can cause.

There are four necessary conditions for deadlock:

a. Mutual exclusion condition b. Hold and wait condition

c. No preemption condition d. Circular wait condition

The strategies used for dealing with the deadlock:

a. Just ignore the problem together

b. Deadlock detection and recovery

c. Dynamic avoidance by careful resource allocation

d. Deadlock prevention by structurally negating one of the four necessary conditions

A state is said to be safe if it is not deadlocked and there is a way to satisfy ail requests currently
pending by running the process in same order.

To eliminate deadlocks by using resource preemption, we successively preempt some resources from
process and give these resources to other process until the deadlock cycle is broken. Following issues
need to be addressed:

a. Selecting a victim b. ‘Rollback C. Starvation.

A=)
<%’ PU Questions

[Oct.15, Apr.15 — 2M M,,,- R —
[Oct.2014 - 2M) 2. Def?nésclale e(c)lcge in Resource Allocation graph.
[Apr.2013 — 2M] 3. Define Safe Sequence.
[Oct.2012 — 2M] 4 What do you mean by Request Edge?
[Apr.2012 — 2M] 5 Define Rollback.
[Oct.2011 — 2M] 6 What is meant by Deadlock?

|
|

4 Marks

oo

Write a short note on resource allocation graph.

What are the necessary conditions for deadlock occurrence‘?
Consider the five processes Py, P;, P,, P;, P, and three resources
Ri, Ry, R; resources. Type R; has 8 instances, R, has 4 instances
and R; has 9 instances. Allocation and maximum matrix is given
below:

Po | 1 01251412
Pi 1211 1 3122
P, 21 0138|014
P3| 1 1 2 121212
P, 0 {1 0165|213

Answer the following questions using Banker’s Algorithm:

i. What is the content of need matrix.

ii. Is the system in a safe sequence? If yes, give the safe sequence.
Explain different methods for recovery from a deadlock.
Explain-Resource-Allocation graph in detail.

Consider the five processes Py, P, P,, Ps;, P, and three resources
Ry, Ry, R; resources type R, has 10 instances, R, has 5 instances
and Rj has 7 instances. Allocation and max matrix is given below:

Po | 0 | 1 0171513
P,i2j0]0}13|2]2
P, 3]1]0]2]9]10]2
Ps | 211 1 21212
P, 0J]O0OJl2]4]3]3

Answer the following questions using Banker’s Algorithm:

I What is the content of Need Matrix.

ii. Isthe system in a safe sequence? If yes, give the safe
sequence.

Explain deadlock prevention strategies.

Consider the following snapshot of system. A system has 5

processes pl through p5 and four resources type A through D.

Allocation MAX Available
A|lB|]C]|D A|lB|C]|D Al[B|CD
P JOJO0[1]2 oJo 12 115]2]0
P.|1]/0]0]0 117]5]0
P; [113[5]4 213156
P06]3]2 0/65]2
Ps10]0[1]14] [0]6]5]6 .
Answer the following question using Banker’s Algorithm.
i What are the content of matrix need.

ii. Is the system in safe states? Give the safe sequence

[Oct.2015 — 4M]
[Oct.15.12,11.Apr.11—4M]
[Oct.2015 — 4M]

[Apr.2015 — 4M]
[Apr.2015 — 4M]
[Apr.2015 - 4M]

[Oct.2014 — 4M]
[Oct.2014 — 4M]

[Apr.2013 — 4M] 9.
[Apr.2013 — 4M] 10.
[Oct.2012 — 4M] 11
[Oct.2012 — 4M] 12.
[Apr.2012 — 4M] 13.
[Apr.2012 — 4M] 14.

Consider the following snapshot of system. A system has 5
processes pl through p5 and four resources type A through D.

Process | Allocation Max | Available
ABC ABC ABC
Po 232 975 332
P4 400 522
Ps 504 1104
Ps 433 444
P4 224 655

Answer the following questions using Banker’s Algorithm:

i. What is the content of Need Matrix?

ii. Is the system in a Safe State? If yes, give the safe
sequence.)

Explain Deadlock Detection in detail.

Explain Deadlock Prevention in detail.

Consider the system with 5 process P = {P,, Py, P,, P3, P4} and

four resources type {A, B, C, D}. There are 3 instances of type

A, 10 instances of type B, 15 instances of type C and 7 instances

of type D. '

Allocation MAX

A|B/C]|D A|B|C|D
P, |0 11121 P, |0 |8 |4 |4
Pi 1011211 P, [0 |6 [5]2
P,i1]0[01}0 P,{1({6 |4 |1
P; |13]5 1|3 P, |23 [7 5
P, 100 |4 |1 P.{0 15 1[5 |7

Answer the following question using Bankers Algorithm:

i. Is the system in a Safe State?

ii. If a request from process P, arrives for (0, 2, 0, 2) can it
be granted.

What is Deadlock Prevention? Explain Deadlock Prevention

Strategies.

Explain the term ‘Selecting a Victim’ in the Context of

Deadlock Recovery.

(/o
UISION

Ghapter 7
MEMORY
MANAGEMENT

1. Introduction

The main purpose of a computer system is to execute programs. These programs, together with the
data they access, must be atleast partially in main memory during execution.

The part of the operating system that manages memory is called the memory manager. Its job is to
keep track of which parts of memory are in use and which part are not in use, to allocate memory to
processes when they need it and deallocate it when they are done, and manage swapping between
main memory and disk when main memory is not big enough to hold all the processes.

1.1 Address Binding

The binding of instructions and data to memory address is known as address binding.

A program resides in the disk in binary executable form. When it is brought in main memory, it is
called as a process.

At a given time, there can be more than one processes in the main memory waiting to be executed.

There processes form a input queue.

A user program has to go through several steps during execution (figure 7.1).

Source

program

Compiler or g
assembler }Compale time

Object
module

Linkage
editor

Load
System module

L.oader

|

In-memory binary
memory image

Figure 7.1: Multi-step processing of user program

Classically the binding of instructions and data to memory addresses can be done at any step along

the way.

1. Compile time binding: If it is known at compile time where the process will reside in

memory then absolute code can be generated.

Example, MS-DOS, .Com format programs are absolute code bound at compile time.

2. Load time binding: If it is not known at compile time where the process will reside in
memory, then the compiler must generate relocatable code in this case final binding is delayed

until load time.

Example, Relocatable programs have load time binding.

3. Run-time binding: If the process can be moved during its execution from one memory
segment to another, then binding must be delayed until run-time special hardware must be
delayed until run time. Special hardware must be available for scheme to work.

Example, In paging systems this binding is used. MMU is used to perform run-time mapping.

1.2 Logical Verses Physical Addresses

The address generated by CPU is called logical address, whereas
the address seen by memory unit i.e. one loaded in the memory
register is called physical address.

The compile time and load time binding methods generate identical,
logical and physical addresses but execution time an address binding
scheme results in different logical and physical addresses. Logical
address are also called as virtual address. The set of all logical
addresses of a program is its logical address space and the set of all

physical addresses is a physical address space.

The run-time mapping of virtual to physical addresses is done by a hardware device called Memory
Management Unit (MMU). It makes use of a register called as relocation or base register.

The value in the base register is added to every address generated by any user process. For example:
If the Fence Register or Base Register is at 1400, then an attempt by the user to address location 0 is
* dynamically relocated to 1400. The user never sees the real address (figure 7.2).

Base r-
register 1400

Logical Physical
address address

CPU ’O Memory

Figure 7.2: Dynamic relocation using base register

1.3 Static Linking

Static linking is the process of copying all library modules used in the program into the final
executable image. This is performed by the linker and it is done as the last step of the compilation
process. The linker combines library routines with the program code in order to resolve external
references, and to generate an executable image suitable for loading into memory.

When the program is loaded, the operating system places into memory a single file that contains the
executable code and data.

This statically linked file includes both the calling program and the called program.

Static linking is performed by programs called linkers as the last step in compiling a program.
Linkers are also called link editors.

Statically linked files are significantly larger in size because external programs are built into the
executable files.

In static linking if any of the external program has changed then they have to be recompiled and re-
linked again else the changes won't reflect in existing executable file.

Statically linked program takes constant load time every time it is loaded into the memory for
execution.

Programs that use statically-linked libraries are usually faster than those that use shared libraries.

In statically-linked programs, all code is contained in a single executable module. Therefore, they
never run into compatibility issues.

1.4 Dynamic Loading

In our discussion so far, the entire program and data must reside in main memory. So the size of the
program is restricted by the size of main memory. To obtain better memory utilization, we can use
dynamic loading. Here a routine is not loaded until it is called. All routines are kept in disk in a
relocatable format. The main program is loaded and executed, when a routine needs to call another
routine, it first checks if the needed routine is loaded, if not, it calls the relocatable linking loader to
load the required routine.

The advantage here is that an unused routine is never loaded. Dynamic loading does not require
special support from the operating system. It is the responsibility of the user to design their programs
to take advantage of such a method.

-

1.5 Dynamic Linking and Shared Libraries

Figure 7.1 also shows dynamic linked libraries. If the operating system supports only static linking,
then the system libraries are also linked like all other object modules. The concept of dynamic
linking is similar to that of dynamic loading. The linking of a program to system libraries is
postponed upto execution. Here a stub is included in the image for each library routine reference.
This stub is a small piece of code that indicates how to locate the appropriate memory resident
library routine. When executed, the stub checks if the routine is already in memory, if not, it is
loaded into memory. It replaces itself with the address of the routine and executes the routine.

Unlike dynamic loading, dynamic linking generally requires help from the operating system.

1.6 Overlays

To enable a process to be larger than the amount of memory
allocated to it, we can use overlays. The idea of overlays is to keep
in memory only those instructions and data, that are needed at any
given time. When other instructions are needed they are loaded into
space occupied previously by instructions that are no longer needed.

For example: Consider a two pass assembler. This program can be roughly divided into following
parts:

Pass 1 70 KB
Pass 2 80 KB
Symbol table 20 KB
Common routine 30 KB

If loaded completely the program would occupy 200 KB of memory, but using an overlay manager
(size 10 KB), we could utilize the same memory space for pass 1 and pass 2 as shown in figure 7.3.

We can now run the assembler in 150 KB of memory.

. Apr. 2015 - 4M.

Explain overlay:
“with diagram.

Symbol
table 20k
Common 30 k
routines
Overlay manager | 10k
N ya
70K | Pass 1) < Pass 2| 80 K

Figure 7.3: Overlays for 2 pass assembler

2. Swapping

Moving processes from main memory to disk and back is called
swapping. It is a simple memory / process management technique
used by the operating system to increase the utilization of the
process or by moving some blocked process from the main memory

to the secondary memory (hard disk).

A process needs to be in memory for execution. However, it is possible that a process may be
swapped temporarily out of memory to a backing store and then brought back into memory for

continued execution.

For example: In a multiprogramming, environment if round robin CPU scheduling is used, then
when the time slot of a process is over and the CPU
be swapped to the backing store and brought back when again it will be allotted a time slot by the

CPU (figure 7.4).

jumps to the next process, then this process can

Main memory

Figure 7.4: Swapping of 2 processes using a disk as a backing store

Operating
system S—
Q@) Swap out
N Process
Py
£ @ Swap in Process
S P
AY 2
User
space S—

Backing store

A variant of this swapping is used for priority based scheduling. If a higher priorify process arrives
and is to be executed, the scheduler swaps out the lower priority process and swaps in the higher
priority process. This variant is often called roll-out, roll-in.

If for a process which is swapped out binding is done at assembly time or load time, then the process
must be swapped in, in the same address space, but if the binding is in execution time, then the
process can be swapped in, in any different addresses also.

The context switch time of swapping is fairly high. Swapping is also constrained by various factors
like pending I/O. If a process has pending I/O and it is swapped out then it might create problems.

Currently, standard swapping is used in very few systems because it requires too much swapping
time and provides too little execution time to be a good memory management solution.

A modification of swapping is used in many versions of UNIX. Swapping is normally kept disabled,
but it would be started if many of the process are in main memory and all using threshold of
memory.

The time taken by the swapper to swap a process that can be swapped temporarily out of main
memory to a backing store, and then brought back into memory for continued execution is called
swap time.

3. Contiguous Memory Allocation

3.1 Single Partition Allocation (Monoprogramming
without Swapping or Paging)

The simplest possible memory management scheme is to have just 1 process in memory at a time
and to allow that process to use cell of the memory. When the system is organized in this way, only
process at a time can be

2560k

400k 0.S. O.S. = operating system

0
Figure 7.5: Memory layout for above system

3.2 Multiprogramming without Swapping or Paging i.e.
Multiprogramming with Fixed Partition (MFT)

In this technique memory is divided up into n (possibly unequal) partition. When a job arrives it can
be put into the job queue for the smallest partition, large enough to hold it. Since the partitions are
fixed in this scheme any space in a partition not used by a job is lost. The disadvantage of sorting the
incoming jobs into separate queues becomes apparent when the queue for large partition is empty

and queue for small partition is full.

NjfwibdlOM|O

0.8

An alternate organization is to maintain a single queue.

Whenever partition becomes free the job closest to the front of queue that fits in it could be loaded
into the empty partition and run. Since it is undesirable to waste a large partition on a small job a
different strategy is to search the whole i/p queue, whenever the partition becomes free and pick the
largest job that fits. Such scheme is used by 0S/360 on large IBM mainframes called as MFT or

OS/MFT.

10 MB

400K
0

0.S.

Figure 7.6: I/P queue for every partition

ooy

3.3 Multiple Partition Allocation (Multiprogramming with
Variable Partitions) (MVT)

In this scheme, the operating system keeps a table indicating which parts of memory are available
and which are occupied.

Initially all memory is available for user processes and is considered
as one large block of available memory, called a Hole.
When a process arrives and needs memory, we search for a hole

large enough for this process. If we find one, we allocate only as
much memory as is needed, keeping the rest available to satisfy
future requests.

It is possible to combine all the Holes into one big Hole by moving all the processes downward as
far as possible, this technique is known as Memory Compaction.

Example,

)
P>
Ps
Py 8
Ps 15

Show the execution (allocator) of these processes using MVT Scheduling alg (2560 k RAM).

Solution
2560
2300
30 =y
2000
P2
1000 P,
400 0.S.
0
(At start)

After 5 ms

After 10 ms

At 13 ms P4 deallocates

2560
2300
2000

1700
1000

400

Ps3
P4
P4
0.s.
2560
2300
P3
2000
1700
1000 P4
400 Ps
0.S.
0
2560
2300 5
2000
1700
1000
900 Pe
400
0..

Pz deallocates
and P4 allocates

Ps allocates

P, Deallocates

At 20 ms P; deallocates

2560
2300
2000
1700
1000
900
Ps
400
0.S.
0
Then,
At 25 ms Ps deallocates
2560
2300
2000
1700
1000
400
0.S.
0

Difference between MVT and MFT

MVT was considerably larger and more complex
than MFT and therefore was used on the most
powerful System 360 CPUs.

MFT was intended to serve a stop-gap untit
Multiprogramming with a Variable number of Tasks
(MVT), the intended ‘target’ configuration of OS/
360, became available in 1967.

It treated all memory not used by the operating
system as a single pool from which contiguous
2. | ‘regions’ could be allocate as required by an
indefinite number of simultaneous application
programs.

Early versions of MVT had many problems, so the
simpler MFT continued to be used for many years.
After introducing new system 370 machines with
virtual memory, in 1972 MFT was developed into
OS/VS;, the last system of this particular line.

This scheme was more flexibie than MFT’s and in
principle used memory more efficiently, but was
liable to fragmentation-after a while one could find
that, although there was enough spare memory in
total to run a program, it was divided into separate
chunks none of which was large enough.

After introducing new System/370 machines with
virtual memory, in 1972 MFT was developed into
OS/VS4, the last system of this particular line.:

In 1971 the Time Sharing Option (TSO) for use with
MVT was added as part of release 2001. TSO
became widely used for program development
because it provided an editor. The ability to submit
batch jobs, be notified of their completion, and view
the results without waiting for printed reports, and
debuggers for some of the programming languages
used on System/360.

The first version of MFT shared much of the code
and architecture with PCP, and was limited to four
partitions. It was very cumbersome to run multiple
partitions. Many installations used Houston
Automatic Spooling Priority (HASP) to mitigate the
complexity. MFT Version If (MFT-Il) shared much
more of the Control Program and Scheduler code
with MVT, and was much more flexible to run. The
maximum number of partitions increased to 52.

Multiprocessing with a variable number of tasks.

Multiprocessing with a fixed number of tasks.

Both the number and size of the partitions change
with time.

Both the number and size of the partitions are fixed.

Introduces external fragmentation, i.e., holes outside
any region.

Introduces Internal fragmentation.

There is dynamic address translation (during run
time).

No dynamic address translation.

3.4

Fragmentation

The segments of a program can be stored anywhere in the memory,
but each segment has to be stored in a continuous memory. '

Segmentation may suffer from external fragmentation as it is
possible that there is free memory but is not contiguous to be
allocated to the next segment.

Internal and External Fragmentation

As processes are loaded and removed from memory the free memory
space is broken into little pieces called Holes.

External fragmentation exists when enough total memory space
exists to satisfy a request, but it is not contiguous, storage is
fragmented into a large number of small holes.

.

Memory that is internal to a partition, but is not being used is called
internal fragmentation.

MFT: Internal fragmentation

MVT: External fragmentation

Paging: Internal fragmentation

Segmentation: External fragmentation

One solution to the problem of external fragmentation is compaction.

The goal is to shuffle the memory contents to place all free memory
together in one large block.

4.

The set of holes is searched to determine which hole is best to allocate.

1.

Free Space Management Techniques

First fit algorithm: The memory manager finds a 1* hole that
is big enough, the hole is then broken up into 2 pieces, one for
the process and one for the unused memory. It is the fastest
algorithm.

Next fit algorithm: It is similar to 1™ fit, except that it keeps track of where it finds a suitable
Hole. The next time it is called, it starts from where it left off. It has slightly worse
performance than 1* fit.

Best fit algorithm: It searches the entire list and takes the smallest hole that is adequate.

It is slower than above two algorithm. It also results in more wasted memory than above two
algorithms.

Worst fit algorithm: It always takes the largest available hole so it is best.

Yet another allocation algorithm: It is Quick fit, which maintains separate lists for some of
the common sizes requested.

5. Allocation Swap of Space

In some systems, when a process is in memory, no disk space is allocated to it. When it must be
swapped out, space must be allocated in the disk swap area for it.

On each swap, it may be placed somewhere else on the disk. The algorithms for managing swap
space are the same. Ones used for managing main memory. _ '

In other systems, when a process is created, swap space is allocated for it on the disk using above
algorithms. Whenever a process is swapped out, it is always swapped to its allocated space, rather than
going to a different place each time.

When the process exits, the swap space is deallocated.

6. Virfual Memory (Overlays)

In early days of computing, IT industry was facing a problem that some programs were too big to fit
in the available memory.

The solution usually adopted was to split the program into pieces called overlays. Overlays would
start running first.

When it was done it would call another overlay.

Although the actual work of swapping overlays in and out was done by the system, the work of
splitting the program into pieces had to be done by the programmer.

Splitting up large programs into small, modular pieces was time consuming and boring.
The alternate method that was deviced has come to be known as virtual memory (Father Ingham, 1961).

The basic idea behind it is that the combined size of the program, data and stack (i.e. the three
segments code, data and stack) may exceed the amount of physical memory available for it.

The operating system keeps those parts of the program currently in use in main memory and rest on
disk.

Virtual memory and multiprogramming fit together very well. While a program is waiting for part of
itself to be swapped in, it is waiting for I/O and cannot run, so the CPU is given to another process.

7. Paging

When a program uses an instruction like

MOVE REG 1000

On a computer which uses virtual memory, these virtual addresses do not go directly to the memory
bus. Instead, they go to a Memory Management Unit (MMU), a chip or collection of chips that maps
the virtual addresses onto the physical memory addresses.

CPU card

CPU sends virtual
CRU / addresses to MMU
Disk
Memory controiler
\
\
MMU

Bus
MMU sends physical addresses to memory

Figure 7.7
The virtual address space is divided up into units called pages.

The corresponding units in the physical memory are called page frames. The pages and page frames
are always of the same size.

Page sizes from 512 bytes to 8 k are commonly used with 64 k of virtual address space and 32 k of
physical memory, we have 16 virtual pages and 8 page frames. Transfer unit is page virtual address.

Virtual address

space Physical address

space

4
8
12
16
20
24
28

/ 32

¥

N

OK-4K
4K-8K
8K-12K
12K-16K
16K-20K
20K-24K
24K-28K
28K-32K
32K-36K
36K-40K
40K-44K
44K-48K
48K-52K
52K-56K
56K-60K

Page frame

} Virtual space

X{x{xl~w|x|lo|x|x|x|jwlalolola

Figure 7.8

Unmapped virtual pages are shown by ‘X’ in the above figure. In the actual hardware, a present/
absent bit in each entry of virtual page table keeps track of whether the page is mapped or not.

If the program tries to use an unmapped page, the MMU notices that the page is unmapped and
causes the CPU to trap to the operating system. This trap is called a page fault. The